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Summary  

This paper investigates the influence of fracture dip on P-wave Amplitude versus Azimuth (AVAz) 
reflectivity.  In particular I derive a linearized equation describing how the P-wave reflectivity varies as a 
function of angle of incidence and azimuth at an interface composed of two anisotropic media.  This 
derivation assumes that the anisotropy is the result of a single set of dipping fractures.  Linear slip 
deformation (LSD) theory is used to model the anisotropy due to asymmetric fractures.  It is assumed 
that the orientation of the fractures is the same in the two media but that the other fracture parameters 
are free to vary as a function of layer.  In the subcase of rotationally invariant fractures this results in 
TTI media.  

    The linearized expression is written in terms of six independent azimuthal basis functions.  The 
azimuthal reflectivity is a linear sum of these basis functions.  To a first order, the dip influences the 
azimuthal functions by scaling them by the square of the cosine of the dip.  The basis functions are 
nonlinearly dependent on the seven parameters describing the problem; the P-wave and S-wave 
background velocity reflectivity, the density reflectivity, the dip, and the three fractional fracture 
weakness parameters.  The azimuthal basis functions represent an alternative data space.  There are 
seven unknown parameters for six data basis functions so the inverse problem is fundamentally 
undetermined.  This is consistent in the limiting case of horizontal fractures which results in a VTI media 
which is an underdetermined problem.  One way to make the problem well posed is to add extra 
constraints to the problem such as specifying the fractures are vertical (HTI).  The consequences of this 
assumption are explored by performing a modeling study.  It is shown that significant biases are 
introduced into the estimates for dips greater than 30 degrees from vertical. 

Introduction 

The characterization of fractures using P-wave AVAz typically assume vertical fractures (Rüger 2002; 
Downton, 2011), but in reality most fractures do not meet this ideal abstraction.  This paper investigates 
the amount of bias this assumption introduces.  To achieve this goal, this paper generalizes the 
azimuthal Fourier Coefficient (FC) approach of Downton et al. (2011) to model dipping asymmetric 
fractures obtaining a linearized expression as a function of dip, fracture weakness parameters and the 
background isotropic parameters.  The linearization is essentially an extension of the classic 3-term 
AVO expression (Swan, 1993) where the azimuthal reflectivity dependence is a function of three 
fracture weakness parameters and dip.  Having established this relationship it is possible to investigate 
the effect of dip. I then show that the inverse problem is underdetermined hence necessitating making 
some a priori assumption such as the vertical fracture assumption.  A modeling study is then performed 
to characterize the bias that this assumption introduces.  In the modeling study significant bias occurs 
in the estimates when the fractures deviate greater than 30 degrees from vertical. 

This derivation assumes that the anisotropy is the result of a single set of dipping fractures.  In this 
paper the fracture dip is defined as the angular counterclockwise deviation of the normal of the fracture 
from horizontal.  Essentially, this represents an angular deviation from vertical.  Linear slip theory 
(Schoenberg, 1980) is used to model the anisotropy due to the fractures.  It is assumed that the 
orientation of the fractures is the same in the two media but that the other fracture parameters are free 
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to vary as a function of layer.   The paper begins with a review of linear slip theory describing the elastic 
stiffness matrix of a single vertical fracture in an otherwise isotropic background media.  A Bond 
transformation is then introduced so as to allow the fracture to dip. 

Having calculated the stiffness matrix for a dipping fracture, the reflectivity expressions of Downton et 
al. (2011) are used to calculate the AVAz reflectivity for a dipping fracture with arbitrary strike.  I show 
that the 2nd basis function coefficient w12 is to a linear approximation equivalent to the anisotropic 
gradient parameter Bani estimated by Rüger.  By showing how dip influences w12, it is possible to predict 

how the Bani estimate will be biased.  Having established the near offset behavior the far offset behavior 
is also discussed. 

Lastly, the uniqueness of the inverse problem is discussed.  The forward problem is described in a 
minimal fashion using the azimuthal basis reflectivity expression.  By writing the forward problem in this 
form, it is possible to show the inverse problem is underdetermined since the number of unknown 
parameters is greater than the number of data.  In order to solve the problem uniquely some 
assumption must be made, two possible assumptions being that the fractures are vertical or they are 
rotationally invariant.  The paper concludes by showing the biases introduced into the estimates by 
making the assumption that the fractures are vertical when in actual fact they have dip. 

   

Linear slip theory 

The LSD theory (Schoenberg, 1980) allows fractures to be modeled as a perturbation of the 
compliance of the background rock.  The total compliance of the rock S is the sum of the background 
compliance Sb plus the compliance due to the fractures Sf.  The fractures can be modeled as an 
imperfectly bonded interface where the traction is continuous but the displacement might be 
discontinuous.  The displacement discontinuity is linearly related to the traction.  For example, the 
displacement discontinuity normal to the fracture is proportional to the normal stress.  This 
proportionality constant is the normal fracture compliance BN.  Similarly, the vertical and horizontal 
fracture compliances BV and BH may be defined.  In the case that both the vertical and horizontal 
fracture compliances are the same the fracture is said to be rotationally invariant.  This is the case of 
penny shaped fractures and for vertical fractures normal to the x-axis gives rise to HTI anisotropy 
(Schoenberg and Sayers, 1995).   When BV and BH are different the fracture is said to be asymmetric.  
This is probably the more realistic case (Far, 2011) but requires more parameters introducing extra 
complexity.  Asymmetric fractures give rise to orthorhombic anisotropy.   

Instead of working with compliances, I choose to parameterize the problem in terms of the normal, 
vertical and horizontal fracture weakness parameters 
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where M=+2and bothand are Lamé parameters. These are fractional parameters which range 
from 0 to 1.  In all cases when the fracture weaknesses are zero the fracture has no influence on the 
total compliance. 

   

Stiffness matrix for a single vertical fracture normal to the x-axis 

The stiffness matrix for a single vertical fracture perpendicular to the x-axis in a background isotropic 
media is (Schoenberg & Douma, 1998) 
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where =1-2g and g is the square of the S-wave velocity, to P-wave velocity,  ratio of the 
background isotropic rock.  Equation (4) can be written more compactly in symbolic matrix notation  

     ,1

fb CCSC         (5) 

where Cb is the isotropic background stiffness matrix and Cf is the stiffness matrix describing the 
perturbation due to the fractures.    

Stiffness matrix for a single dipping fracture 

In order to introduce fracture dip, the stiffness matrix (equation 5) may be rotated about the y-axis using 
a Bond transformation (Winterstein, 1990) 

       ,
~ T

fb

T
MCCMMCMC      (6) 

where M is the bond transform about the y-axis (Carcione, 2001).  Since the isotropic background is 
invariant under rotation 

     ,
~ T

fb MMCCC        (7) 

only the fracture perturbation stiffness matrix needs to be rotated, the result of which is listed in the 
Appendix.   

Reflectivity expressions 
In order to emphasize the azimuthal dependence of P-wave Amplitude versus Azimuth, Downton et 
al. (2011) rewrote the linearized AVAz expression of Pšenčik and Martins (2001) for general weakly 
anisotropic media as the truncated Fourier series 
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where  
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and where the wij coefficients are defined in Downton et al. (2011) Appendix B. The FCs  rn are each 

dependent on the average angle of incidence . Before going into the details of the wij coefficient 
calculations, there are several general observations that can be made.  The n=0 FC (equation 9) 
describes the DC (or average amplitude) and has the same form as the classic 3-term AVO expression 
where the w00, w01, and w02 are modified from the isotropic expression by the presence of the fractures.   
The n=4 FCs are angle dependent functions of a single variable. The n=2 FCs have the most complex 
form, being a function of two variables.    

Until now, the fracture strike has not been discussed.  The problem was originally posed so that the 
normal of the fracture was the x-axis. In order to generalize this to any orientation, the fracture may be 

rotated anticlockwise sym  about the z-axis by performing a change of variables →sym so that 

equation (8) becomes  

                 .4cos2cos, 420 symsym rrrR     (12) 
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Having established the general form of the solution, the analytic expressions for each of the wij  

coefficients are next derived.  This involves substituting the density normalized stiffness matrix elements 

(Appendix) into Appendix B of Downton et al. (2011).  Defining the dip  from the vertical and the 
isotropic gradient 

 ,
2

4
2 2

2








 










 

















isoB      (11)  

the first 3 coefficients, which control the AVO behavior, are 
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Note that these expressions are written in terms of the change in fracture weakness parameters between 

the two layers (i.e. N,  V,  H ).  The remaining 3 coefficients control the amplitude versus azimuth. 
Rather than write these in terms of fracture weaknesses, it is advantageous to rewrite them in terms of 
weighted differences of fracture weaknesses. These difference parameters turn out to be better resolved 
as they have smaller uncertainty.  For asymmetric fractures the anisotropic gradient is  

      .NVani gB         (15)  

Bakulin et al. (2001) shows that for a rotationally invariant fracture this results in the same definition of the 
anisotropic gradient that Rüger uses. In addition to the anisotropic gradient, two other weighted 
differences  

      ,NVV gg         (17)  

      ,NHH gg         (18)  

prove useful. Having established these three definitions the remaining coefficients are 
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and 

    .sincos
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Note that the w12 and w22 coefficients control the n=2 periodicity of the AVAz reflectivity while the w24 
coefficient controls the n=4 periodicity of the AVAz reflectivity.   

Rotationally invariant fractures 

In the case of rotationally invariant fractures  = V  = H equations (19), (20) and (21) simplify to   
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In this simpler case it is obvious that the dip scales each of the terms by the common scalar cos2   A dip 
of 30 degrees (from vertical) scales each of the coefficients down by at least 25% from the zero dip case.  
In actual fact the coefficients get scaled down more than this which is the topic of the next section.   

Dip dependence 

Let us first focus on the 2nd FC.  At near angles of incidence and for vertical fractures Downton (2010) 
showed that the 2nd FC gives an estimate of the Bani similar to the near offset Rüger equation.  Figure 1a 
shows how the 2nd FC varies as a functions of dip for an average incidence angle of 30 degrees.  This is 

generated for a model where the N=0.15,  V =0.20,   H =0.15 and the Vp/Vs ratio=1.7.  The 2nd FC 
(shown as the black curve) decreases as a function of dip. The 2nd FC equation (10) is a weighted sum 
of the w12 and w22  coefficients (equations 19 and 20).  For small angles of incidence the w12 coefficient 

dominates.  This is clearly evident in Figure 1a where the w12 sin2 term is shown in blue and the w22 

sin2tan2  term is shown in red.  The 2nd FC decreases more than the scalar cos2 predicts.  This is 
due to the contribution of the negative 2nd term in w12 which becomes more important as the dip 
becomes larger. Because of this extra contribution the 2nd FC approaches zero for a dip about 50 
degrees.  Since the 2nd FC coefficient is often interpreted as a fracture indicator the fact it may go to zero 
at some dip is problematic.    

Figure 1a is displayed for an average incidence angle of 30 degrees which is within the near offset/angle 
approximation.  In contrast Figure 1b is shown for an incident angle of 45 degrees.  In this case the 

sin2cos2  terms are also important as evidenced by the relative weighting of the w12 and w22 coefficients 
in the total response.  In the case of the 45 degree data the sign of the 2nd FC can actually switch. 

   
Figure 1: The effect of dip on the 2

nd
 FC at 30 degrees (a) and 45 degrees (b) incidence angle.  The blue curve 

shows the contribution of the w12 term while the red curve shows the contribution of the w22 term.  The total or 
combined response is shown in black.  For small angles (i.e. 30 degrees) the w12 term dominates. 
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Inversion 

This last section discusses how to solve the inverse problem and the uniqueness of this solution. For 
simplicity, this discussion assumes the strike of the fracture is known.  This reduces the number of 
azimuthal bases wij (or data) from 9 to 6.  Downton et al. (2011) discuss how to solve for this in the case 
of rotationally invariant vertical fractures.  

Equations (8), (9), (10), and (11) describe a set of linear equations which form the basis of the inversion.  
Downton et al. (2011) describe how for different angle data, the azimuthal FCs can be determined.  After 
determining the FCs for at least 3 distinct angle ranges, the coefficients w00, w01, w02, w12, w22, and w24 can 
be determined.  This is the first step, since the wij coefficients are descriptive parameters and give limited 
insight into the more fundamental rock physical parameters.  In order to obtain this understanding we 
must perform another inversion based on equations (12), (13), (14), (19), (20), and (21) which describe 
the functional relationships between the wij coefficients and the fractional elastic and fracture parameters.   
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Figure 2: Inversion estimates of Bani, V  and H assuming the fractures are vertical.  The horizontal axis displays 
the actual dip of the fractures. When the dip is 0 degrees from the vertical the estimate corresponds to the ideal 
solution.  Non-zero dip introduces bias into the estimates (compared to ideal solution on the y-axis).    

These nonlinear equations relate the six wij  coefficients to the three fractional elastic parameters 

///and four fractional fracture weakness parameters N,  V,  H and dip . Hence the 
problem is underdetermined since there are seven unknowns to estimate but only six known data.  In 
order to solve this, we must specify some a priori information.  Two possible simplifications are; 1) 

assume the fracture is rotationally invariant (V =H ) or 2) assume the fractures are vertical 

Historically, it has been assumed that the fractures are vertical.  If this assumption is made, then 
there are six linear equations in six unknowns and the system of equations may be solved exactly.  For 
simplicity, the 3 equations which govern the azimuthal behavior (equations 19, 20, and 21) are only used  
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Given  g   and specifying  this set of equations may be solved exactly      
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where =(1-g)/(1-3g).   If in fact the fractures are dipping, this will result in biased estimates.  In order to 
quantify this, I created a series of models with dips varying from 0 to 75 degrees using the same model as 

specified earlier.  Equation (25) is then inverted to estimate Bani, V  and H. Figure 2 shows the results.  
The solution for the zero dip model gives the correct answer (the solution along the vertical axis).  The 
solutions for nonzero dip are all biased.  The bias becomes significant for dips greater than 30 degrees.  

Conclusions 

This paper derived a linearized expression describing how the P-wave amplitude varies as a function of 
angle of incidence and azimuth for a single dipping asymmetric fracture described in terms of the linear 
slip fracture weakness parameters.  The influence of dip can be studied by examining the relative 
simple form of this analytic expression.  To a first order, the dip dampens the azimuthal response by the 
square of the cosine of the dip, but in practise the dampening is slightly greater due to 2nd order effects.  
The linearized expression provides a relatively simple set of equations to perform the inverse problem.  
Upon examining these equations it is evident that the inverse problem is underdetermined, requiring a 
priori data or assumptions in order to solve the problem in a stable fashion.  A modeling study was 
performed to understand the bias that the assumption of vertical fractures would introduce to the 
estimates.  It was found that dips greater than 30 degrees introduce significant bias.   
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Appendix 

The non-zero density normalized stiffness matrix elements for the dipping fracture perturbation matrix 

/
~ T

ff MMCA   are   
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