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Summary

In land seismic data, the source and receiver responses are often equalized using surface consis-
tent deconvolution (SCD) techniques. This deconvolution method generally decomposes the seismic
trace into a source function, a receiver response, a reflectivity term and an offset-dependent compo-
nent. In most cases the focus is on the removal of the source and receiver effects. SCD uses second
order statistics, and therefore phase can not be estimated. Consequently, the minimum phase as-
sumption is adopted for the source and receiver components. Recent developments in blind wavelet
estimation methods from seismic data offer much promise for addressing the SCD problem with no
prior assumptions on the phase. In this paper, we propose a blind surface consistent wavelet estima-
tion method based on an extension of the Euclid deconvoluton method.

Introduction

Seismic reflection data can be viewed as a filtered representation of the Earth’s response. Hence, de-
convolution is often used as a standard seismic processing technique to estimate and remove these
filters. Several flavors of deconvolution algorithms exist with each using different decompositions of
the seismic trace and assumptions in order to estimate the deconvolution operators. Unlike spiking
deconvolution, which is single-trace based, SCD is a multichannel deconvolution approach. SCD
takes advantage of the data redundancy to equalize receiver and source signatures (Levin, 1989;
Cambois and Stoffa, 1992). SCD can be performed in the log/fourier domain (Taner and Koehler,
1981; Morley and Claerbout, 1983; Cambois and Stoffa, 1992; Cary and Lorentz, 1993; van Vossen
and Trampert, 2006) or in the time domain (Levin, 1989).

In this study, we expand Euclid deconvolution (Rietsch, 1997) to the case of SCD. In other words,
the homogenous system of equations arising in Euclid deconvolution is reformulated in terms of SCD
and an alternating optimization algorithm is proposed to estimate source and receiver wavelets that
permit to estimate their associated inverse filter to equalize the pre-stack volume.

Theory

To explain the surface consistent extension of the Euclid deconvolution, let us consider the following
model:

Di j(z) = Si(z)G j(z)Ri j(z) (1)

where Di j(z), Si(z), G j(z), Ri j(z) represent the z-transform of the noise-free seismic trace, the source
function, the receiver response, and the medium response respectively. The index i represents
source number and the index j represents the receiver number. From (1) one can also write the
equation describing another trace within same shot gather as

Dim(z) = Si(z)Gm(z)Rim(z). (2)
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Dividing (1) by (2) leads to

Dim(z)G j(z)Ri j(z)−Di j(z)Gm(z)Rim(z) = 0. (3)

Similar steps can be used for a pair of traces with common receivers to obtain

Dn j(z)Si(z)Ri j(z)−Di j(z)Sn(z)Rn j(z) = 0. (4)

Equations (3) and (4) form a homogeneous system of equations. This system of equations can be
written in matrix notation

(
D̃imG j −D̃i jGm 0
D̃n jSi 0 −D̃i jSn

) ri j

rim

rn j

= Ar = 0 (5)

where r is a column vector representing the multichannel reflectivity in the time domain; D̃imG j, and
D̃n jSi correspond to convolution matrices derived from Dim(z)G j(z), and Dn j(z)Si(z) respectively. In
this case, we are interested in a non-trivial solution r 6= 0. Since the seismic data used for SCD
deconvolution is often contaminated by noise, the optimal solution should be required to minimize (5)
in a least square sense:

argmin
s,g,r

E2 = argmin
s,g,r

{F (d,s,g,r)} (6)

where
E2 = (Ar)T (Ar).

Consequently, for (5) to have a non-trivial solution, AT A must have one vector with a zero eigenvalue
(Rietsch, 1997). Since there exist a large combination of trace pairs that can be used to derive the
homogeneous system of equations for large data sets, A becomes a large sparse block matrix. To
further constrain the solution space we decide to use a regularization term, H (r), to enforce sparsity
in the reflectivity. Thus, the cost function J to be minimized is defined as:

argmin
s,g,r

J = argmin
s,g,r

{F (d,s,g,r)+µH (r) subject to rT r = 1}. (7)

The cost function in (7) can be minimized by iteratively solving the following subproblems:

”r−step” : r = argmin
r
{F (d,s,g,r)+µH (r) subject to rT r = 1} (8)

”s−step” : s = argmin
s
{F (d,s,g,r)} (9)

”g−step” : g = argmin
g
{F (d,s,g,r)}. (10)

Note that equation (8) is identical to the method described by Kazemi and Sacchi (2013) where
H (r) is the Huber norm. The iterative algorithm is primarily centered around (8) whereby estimates
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Figure 1 : a) Synthetic data of three shot gathers (SNR = 20; Acquisition geometry: S1 = S2 = S3;
G1 6= G2 = G3 = G4 = G5); b) The effect of source and receiver equalization on data in Figure 1a using
wavelet estimates in Figure 2.

for the source and receiver function are being updated accordingly (equations 9 and 10) at each
iterative step. In this study, we contend that (9) and (10) are equivalent to a surface consistent least
squares problem for estimating the source and receiver operators respectively. Hence, we use the
least squares approach to further simplify and speed up the iterative algorithm.

Example

In the example, we use three synthetic shot gathers (Figure 1a) obtained by convolving the source
functions, with the receiver functions and sparse reflectivities. All shot gathers are generated with
identical sets of receiver functions. The signal to noise ratio is defined as σdata/σnoise. Figure 1b
shows the data after the source and receiver effects have been deconvolved. The quality of the blind
surface consistent wavelet estimates used for the deconvolution is shown in Figure 2. In the inversion
process, the wavelets are assumed to be stationary throughout the time domain of the input data.
The algorithm does a reasonable job in estimating the source and receiver wavelets for each trace in
the data.

Conclusion

Surface consistent deconvolution is an important step for processing land seismic data especially
when such data are to be used for applications that are sensitive to amplitude variations. Thus it
is important to remove source and receiver effects that contribute significantly to such amplitude
variations. In this paper, we have discussed a surface consistent method that blindly estimates the
source and receiver functions, which can then be used to deconvolve the data. The fundamental
difference with existing SCD methods is that no assumptions for phase are made. The proposed
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Figure 2 : a) Wiggle plot of true (black) and recovered (blue) source functions; b) Wiggle plot of true
(black) and recovered (blue) receiver functions.

method looks promising and requires further research and tests using field data.
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