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Summary

In seismic data processing, deconvolution plays a very important role because it permits to increase
the temporal resolution of seismic sections and to equalize sources. The deconvolution problem when
the wavelet is known is an ill-posed problem that can be tackled via regularization methods. However,
the seismic source wavelet is unknown and therefore, it must be estimated from the data prior to
deconvolution. In this paper, we examine an algorithm to simultaneously estimate the reflectivity and
the wavelet. The method assumes that the underlying seismic reflectivity is a sparse series and
that a common seismic wavelet exists for a large number of seismograms with different reflectivity
sequences. The method reduces to the alternating minimization of a cost function to promote sparsity
in the reflectivity and smoothness in the wavelet.

Introduction

In seismic data exploration, deconvolution is used to estimate, from the observed data, the reflectivity
series of the subsurface. In general, deconvolution methods assume that the wavelet is known or
that it can be estimated from data via the minimum phase assumption (Robinson, 1967; Peacock and
Treitel, 1969; Robinson and Treitel, 1980). It can be shown that for a Gaussian white reflectivity series
one cannot estimate the phase of the wavelet. In fact, one can only estimate the amplitude spectrum
and utilize the minimum phase assumption to estimate the wavelet. However, it can be shown that
phase and amplitude of the wavelet can be estimated using higher-order statistical methods when
the reflectivity sequence is white and non-Gaussian. Methods in this category are Minimum Entropy
Methods (Wiggins, 1978; Donoho, 1991)) and Cumulant Matching techniques (Tugnait, 1997).

We explore an extension of the method proposed by Canadas (2002) for the simultaneous estimation
of the wavelet and the reflectivity series that characterize the subsurface. However, there is an
important distinction in our method with respect to the method proposed by Canadas (2002), we
estimate a wavelet perturbation and not the wavelet in each iteration. We examine the performance
of the algorithm versus SNR and the degree of sparsity of the reflectivity. We also provide a marine
real data example where we compare the estimated wavelet with the first break wavelet estimator
computed by averaging traces of a constant offset section.

The article is organized as follows. First we review the principles of deconvolution method. Next,
we introduce the proposed two-stage blind deconvolution algorithm. Eventually, we examine the
synthetic and real data examples to manifest the effectiveness of the proposed blind deconvolution
technique.

Theory

The seismic trace d[n] can be expressed as the convolution of the reflectivity sequence r[n] and a
wavelet w[n] plus a noise contamination term e[n]. This system can be represented in matrix-vector
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form via the following expression

d = Wr+ e (1)
= Rw+ e , (2)

where d is the N vector of observations, r is the M × 1 vector representing the reflectivity and w is
the L×1 vector containing the wavelet coefficients. Similarly, the matrix W is the N ×M convolution
matrix of the wavelet and R is the N ×L convolution matrix of the reflectivity. Clearly, we have used
the commutative property of the discrete convolution where Wr = Rw. Moreover, we also need to use
the familiar expression M = N+L−1 that must be honored to properly represent discrete convolution
in matrix-vector multiplication form. The above expression easily can be extended in the multichannel
problem where we assume a common wavelet for J number of traces. In addition, we assume that
the wavelet can be written as the summation of an initial wavelet W0 and a wavelet perturbation
∆W. Now, to estimate the reflectivity series (r) and wavelet perturbation (∆w ) from the multi-channel
seismic signal, the following cost function needs to be minimized

ψ(∆W,r1,r2, . . . ,rJ) =
J

∑
j=1

||(W0 +∆W)r j −d j||22 +
J

∑
j=1

λ ||r j||1 +µ||∆w||22 . (3)

The matrix ∆W is the convolution matrix of wavelet perturbation while ∆w indicates the perturbation
of the wavelet in vector form. The `2 norm in equation (3) represents the misfit of all traces. This
is a non-linear optimization problem and we propose an iterative method where we minimize (ψ)
with respect to r j and ∆w. We first minimize with respect to the reflectivity sequence leading to the
following system of non-linear equations

∂ψ
∂r j

= WT Wr j −WT d j +λQ j = 0, j = 1 , . . . ,J , (4)

where Q j is a diagonal matrix with elements given by the absolute value of the reflectivity samples
for trace j. Equation (4) can be solved by applying the Fast Iterative Shrinkage Thresholding Algo-
rithm (FISTA) (Beck and Teboulle, 2009) or Iterative Reweighed Least Squares (IRLS) (NeIder and
Wedderburn, 1972). Notice that we need to use the l1 regularization term to impose sparsity on the
reflectivity. It can be shown that the last assumption (sparsity) is vital to operate with this algorithm.
We now differentiate the cost function (ψ) with respect to the wavelet perturbation and equate the
derivative to zero to obtain condition to estimate the wavelet for fixed reflectivity sequences. It leads
to the well-known regularized multichannel least-squares estimator of the wavelet perturbation

∆w = (
J

∑
j=1

RT
j R j +µI)−1(

J

∑
j=1

RT
j (d j −R jw0)) . (5)

In the proposed algorithm we start with an initial wavelet and use FISTA to estimate a sparse group
of reflectivity sequences (equation 4). With the current estimate of the reflectivity we estimate a
wavelet perturbation common to all traces via equation (5). The updated wavelet is filtered with a
bandpass filter to guarantee that the wavelet does not have frequency components outside an a priori
defined spectral band. The latter is required to stabilize the algorithm and avoid rough estimators of
the wavelet. The updated wavelet is then used to re-estimate sparse reflectivity series and so on.
The iterative process continues until the wavelet perturbation becomes small enough and the cost
function stops changing with iterations. The method will work efficiently with highly uncorrelated
spatial reflectivity series. In cases with smooth spatial variations of the reflectivity, one can use the
Block Bootstrap (Paparoditis and Politis, 2001) method to generate windows of data with spatially
incoherent reflectivity sequences.
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Examples

To investigate the performance of the proposed nonlinear optimization algorithm, the correlation of
the estimated wavelet with the original one is set as the metric for synthetic seismic data examples.
To begin with, a synthetic seismic data is constructed by convolving a sparse reflectivity series with
a Ricker wavelet of 600 phase rotation. Subsequently, Gaussian and incoherent noise (SNR = 6)
is added to data. The reflectivity series is portrayed in Figure (1(a)) and the seismic data in Figure
(1(b)). The estimated reflectivity calculated by the proposed method is shown in Figure (1(c)). Finally,
Figure 2 shows the starting wavelet adopted by our algorithm, the true wavelet and the final estimator
of the wavelet.

In order to examine the behaviour of the algorithm under different SNRs and density of reflectors, we
have executed 100 realizations of reflectivity sequences and additive noise. The correlation between
the true and estimated wavelet is computed for the 100 realizations of synthetic data for each SNR
while the density of reflector is kept constant at 40% (meaning 40% samples of the reflectivity are
non-zero). The results are shown in Figure (3(a)) which shows the algorithm is quite vulnerable to
additive noise. Finally, Figure (3(b)) shows the correlation between the true and estimated wavelet
for fixed phase rotation (600) and SNR = 6 for the case where we varied the density of the reflectivity.
The figure manifests that the method works well when the reflector is sparse and starts to break for
reflectivity sequences that are non-sparse.

A windowed section from the Mississippi Canyon marine data set was used for testing the algorithm
in a real data scenario (Figure (4(a))). The proposed algorithm was applied to calculate the esti-
mated mixed-phase wavelet and reflectivity series. Subsequently, the seismic data was recovered by
convolving the estimated wavelet and reflectivity series. Figure (4(b)) depicts the estimated reflectiv-
ity series and Figure (4(c)) represents the recovered seismic data. Eventually, Figure 5 shows the
comparison among the estimated, average first-break and initial wavelet for real data.

Conclusion

In this article we have formulated a nonlinear optimization algorithm for estimating sparse reflectivity
series and a wavelet perturbation. We have initiated the algorithm with a zero phase wavelet and
assuming that the reflectivity series is non-gaussian. The proposed algorithm estimates the wavelet
perturbation required to update the wavelet and to estimate the sparse reflectivity. Synthetic and real
data examples showed that the method was successful to estimate the wavelet and the reflectivity
in situations where one can assume high SNR and sparse reflection sequences. The method also
requires that the window of analysis contains sufficient spatial variability of the reflectivity sequence.
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Figure 1 Synthetic data example. (a) Original reflectivity series utilized to test the proposed blind
deconvolution algorithm. (b) Seismic data modelled by convolution of the reflectivity with a Ricker
wavelet with phase rotation 600. The data were also contaminated with noise (SNR = 6.0). (c) Sparse
reflectivity series obtained by the proposed blind deconvolution method.
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Figure 2 Initial, original, and estimated wavelet for synthetic data with phase rotation 600 and SNR=6.
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Figure 3 The normalized correlation between the estimated and true wavelet for different (a) SNRs
and (b) density of reflectors (the density measures the percentage of non-zero coefficients of the
reflectivity series).
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Figure 4 Real data example. (a) A window of the Mississippi Canyon marine seismic data. (b)
Reflectivity series estimated via the proposed algorithm. (c) Seismic data after convolution of the
estimated reflectivity with the estimated wavelet.
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Figure 5 Initial, recovered, and first-break wavelet for real data.
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