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Summary  

A visual method for construction of migration operator in a matrix form is introduced. Once the matrix is 
constructed, migration can be repeated just by a matrix-vector multiplication. This is useful in some 
applications that need several migration performances on data. Least squares migration is one of these 
applications. The shape of least squares migration matrix,    , is presented as well. 

Introduction 

The idea of using Kirchhoff modelling operator in the explicit forms is explained in part I in this report. 
Same methodology is implemented here to reconstruct Kirchhoff migration matrix. Considering each 
subsurface point as a diffraction point, Kirchhoff time migration collapses all diffracted energies to the 
scatterpoints using Double Squares Root (DSR) equation. The result is a properly migrated image. 
Since Kirchhoff modelling and migration are linear operators, they can be expressed in a matrix-vector 
multiplication scheme.  
By defining the earth reflectivity model by  , and the Kirchhoff modelling operator by  , the seismic 
data,  , is given by, 

    .       (1) 
The inverse of this calculation should return the reflectivity back, 

       .       (2) 
However, calculation of inverse is not always a possible or easy task. First of all,   may not be a square 
matrix and invertable. Second problem in calculating     is the large size of   matrix. The transpose 
(adjoint) of   matrix is   , and is easier to calculate than the exact inverse. The transpose is less 
sensitive to the imperfection of data; therefore, it does a better job than the inverse (Claerbout, 2005). 
Migration methods are essentially transpose process. In the case of Kirchhoff modelling, the transpose 
process is prestack Kirchhoff migration which is defined by, 

 ̂     ,       (3) 
where  ̂ is the migrated image and    is the migration operator. 
In least squares migration,   can be estimated by minimizing the difference between the observed 
data  , and the modeled data   ̃, expressed by |  ̃   |, where  ̃ is an approximation to  . Finding 
  is feasible by solving the following normal equation: 

          .      (4) 
Solving equation 4 gives the least squares minimum norm solution,    , to the problem: 

                      (5) 

Construction of    matrix 

The transpose of modelling matrix is the migration matrix,   . However, the construction of migration 
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matrix is easier to understand. For more information readers are being referred to Yousefzadeh and 
Bancroft (2010, 2011).  
For simplicity assume one shot gather with one hyperbola in eight traces, each with six samples as:  
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.                                                     (6) 

In order to do Kirchhoff migration, all samples on this hyperbola (2s) must be added and the result 
         placed on the apex of the hyperbola, in the position of row # 1 and column # 5 of the 
image domain. Lets  ̃   

  be a transposed version of  , but with ones instead of the non-zero elements 
as seen in equation 7: 
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.                                                               (7) 

Index     in  ̃   
  means that we are looking for a migration operator for the scatterpoint at row # 1 and 

column # 5 of our model. Then, multiplication of  ̃   
  by   gives the following matrix: 

 ̃   
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.                                                    (8) 

Summation of the diagonal elements of  ̃   
    matrix is equal to the number that must go to the row # 1 

and column # 5 in the migration image: 
 ̂̃    ∑       ̃   

          .                                                                (9) 
This procedure is valid only for one hyperbola in data and one point in the image domain,  ̂̃   . 
Practically we need a matrix to multiply to the whole data to get the desired migration image: 

 ̂        
   ,                                                          (10) 

where  ̂    is the migration image at row #1 and column # 5. Data is a matrix with      traces, each 
trace in a column, and    samples per column. To do matrix multiplication in equation 10,   must be 
vectorized to   . To have the data as a vector, we put column     of   below column   for all columns. 
Consequently,  ̃   

 , must also be a row vector. If we put all rows of  ̃   
  next to each other, the desired 

vector is achieved: 
 ̃    

                     .                                            (11) 
Now multiplication of  ̃    

  by   , is equal to the summation along the diagonal elements of  ̃   
   matrix 

in equation 8. Therefore, calculating the diagonal elements of  ̃   
   matrix, can be replaced by the 

multiplication of  ̃    
  row vector to the    column vector. This is equivalent to the summation of 

amplitudes along the flanks of the diffraction hyperbola: 
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      . (12) 

Vector    has          elemnents.  ̃    
  is a vector with the same length. The resulted  ̂̃    is a 

number corresponding to one point in the image domain, at the hyperbola apex. In reality, there are 
       possibilities for the position of hyperbola apexes. Therefore, if  ̃    

  row vector is for migration 
of one point in the image domain at row #   and column #  ,  then for each image point we have to have 
another row vector for  ̃ . This can be done by adding additional rows to   . If each row in the 
  matrix represents a point in the migrated image then    will include        rows. The result of 
multiplication of   , a        by          matrix, to the   , a          vector is a        vector: 
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]. (13) 

This vector must be reshaped as a    by     matrix to form the migrated image on an interpretable 
section. In vectorizing   , we put the seismic traces below eachother by putting the second trace below 
the first one and the third trace below the second one and so on. If the same vectorization for the 
image,  ̂ , is desired, it must be considered in the construction of     matrix in advance. Each row in 
  matrix represents one sample in the image vector  ̂ . By putting all rows corresponded to first 
column of the image matrix below each other and then repeating this procedure for the next column of 
the image matrix,  ̂  is vectorized in the same manner as    is vectorized.  
In calculation of   , migration weight and other migration parameters must be included. Weight can be 
added to    matrix by replacement of ones with the proper amplitude scales. Migration weights are 
applied to the data in the most internal loop of migration algorithm. Consequently,   can be calculated 
only by going to the most internal loop and replacing the   elements by the calculated migration 
weight. If instead of using the DSR equation, we use a ray tracing program, this technique can be 
extended to the prestack Kirchhoff depth migration.  

Example of   , and     matrices 

As an example, suppose the assumed geometry includes only one source, 15 receivers, 15 CMPs, 200 
pseudo depth samples and our data has 300 samples per trace. This geometry is shown in Figure 1. 
Migration is a           matrix, a large matrix for such a small geometry. This matrix is shown in 
Figure 2. Figures 3a and 3b show the inversion matrix with the geometry in Figure 1. 

 
Figure 1: A 2D model including one source (red triangle) on the top of a scatterpoint (blue circle) and eight 

receivers (flags) on the earth surface. 
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a) b)  
Figure 2: a) Non-zero elements of matrix   , b) Close up of the first 250 rows and columns. 

a)  b)  
Figure 3: a) Non-zero elements of matrix    , b) Close up of the first 1000 rows and columns. 

Conclusions 

A technique for creating Kirchhoff migration and inversion matrices is shown without the requirement of 
going into the mathematics of Kirchhoff migration or Green functions. Once it is calculated, migration 
can be easily repeated just by multiplication of the matrix to data vector. However, the migration or 
modelling matrix is too big or dense which make it impractical for many real datasets. 
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