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Unconventional energy (e.g. coal bed methane, shale gas) now is playing more important roles in 
the whole energy system. As Understanding the adsorption capacity and deformation change 
during adsorption of methane in shales, may help the exploitation and resource evaluation (ROSS 
and BUSTIN, 2008; SCHMOKER, 1995). Pore structure information of eleven shale samples were 
measured by N2 adsorption isotherm method. Isotherms as well as pore size distributions of these 
samples were obtained (See Fig. 1) by employment of quenched solid density function theory 
(QSDFT). Based on these experimental data, a systematic simulation work was carried out in this 
study. 
 
The density functional theory (DFT) with properly chosen parameters of intermolecular 
interactions bridges scales from molecular simulations to classical thermodynamics (NEIMARK et 
al., 2003). DFT can approximate the results of Monte Carlo (MC) simulations for pores wider 
than about 2 nm and, in turn, can be approximated by the macroscopic 
Derjaguin-Broekhoff-de-Boer (DBdB) equations for pores wider than 7–10 nm. Compared to 
classical NLDFT (nonlocal density functional theory), the QSDFT model takes into account the 
carbon surface heterogeneity and significantly improves the way of calculating adsorption 
isotherms. The details of the QSDFT method are given in earlier literature (NEIMARK et al., 2009; 
RAVIKOVITCH and NEIMARK, 2006). QSDFT considers the solid as a quenched component of the 
two-component solid–fluid system and reduces the adsorption interactions to the pairwise 
interactions between molecules of adsorbate (fluid) and adsorbent (solid). In our calculations, we 
used the Lennard-Jones (LJ) potential to represent both fluid–fluid and fluid–solid interactions. 
In addition, we employed the standard WCA scheme to determine the van der Waals attractive 
potentials as given below, 
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For methane-methane interaction, the effective LJ parameters for fluid–fluid interactions were 
chosen as εff/kB = 148.1 K, σff = dHS = 0.381 nm. For methane-shale interaction, the effective LJ 
parameters for solid–fluid interactions were chosen as εsf/kB =184.62 K, σsf =0.333 nm 
(RAVIKOVITCH et al., 2001). In the QSDFT model, the key parameter is the roughness parameter 
δ, representing an average characteristic scale of the surface corrugations. The roughness 
parameter δ represents the half-width of the density ramp (2), and is taken as δ= 0.04 
nm(RAVIKOVITCH and NEIMARK, 2006) 
 
We calculated adsorption isotherms of methane in shale pores of various sizes, under a range of 
pressures, at 298K and 360K (see Fig. 2). We applied these results to predict the extent of 
deformation in a hypothetical shale basin (see Fig. 3). 
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Figure 1: N2 adsorption isotherms and pore size distribution of shales sampled from the Shahejie Formation, 
Dongying Depression, Shengli Oilfield 
A) and C) Adsorption and desorption isotherms of N2; B) and D) Corresponding PSD obtained from QSDFT 
method. 
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Figure 2 Adsorption isotherms of methane in pores of width from 0.5 to 50 nm. 
A) and B) Isotherms of total adsorption and excess adsorption at 298 K, respectively; C) and D) Isotherms of total 
adsorption and excess adsorption at 360 K, respectively. 
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Figure 3 Adsorption amount and deformation of different shale samples at in-situ conditions 
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