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Thermochemical sulfate reduction (TSR), an abiological reduction of reservoir sulfates by 

hydrocarbons, can give rise to highly aromatic, insoluble solid bitumens in many petroliferous 

basins. Solid bitumens found in association with TSR settings, typically deep-buried carbonate 

rocks, are well documented in many geological observations from around the world (e.g. Stasiuk, 

1997; Machel, 2001). These types of solid bitumens have long been recognized as direct, stable 

byproducts of TSR, and their presence has not been considered an important factor in the TSR 

process, in comparison with hydrogen sulfide (H2S). 

In most of geological observations, traditional reducing agents for TSR mainly consist of 

branched and n-alkanes, n-alkenes, followed by cyclic and mono-aromatic species, in the 

gasoline range (e.g. Goldstein and Aizenshtat,1994; NÖth, 1996; Machel, 2001), but also 

sometimes involve methane (e.g. Worden and Smalley, 1996; Cai et al., 2004). Fluidic organic 

compounds, mainly gaseous and liquid hydrocarbons, have generally been used as reducing 

agents in previous TSR simulations (e.g. Kiyosu and Krouse, 1990, 1993; Goldhaber and Orr, 

1995; Cross et al., 2004; Pan et al., 2006; Yue et al., 2006; Ding et al., 2007, 2008, 2010, 2011; 

Zhang, S. C. et al., 2008; Zhang, T. W. et al., 2007, 2008a, 2008b; Amrani et al., 2008, Chen et 

al., 2009; Lu et al., 2010). Few investigations have been made concerning solid bitumens as 

reducing agents for TSR. TSR-bitumen, especially pyrobitumen with fine-grained mosaic needle 

coke (Stasiuk, 1997) was carbon-rich, hydrogen-poor and generally produces negligible 

pyrolyzate yields (Kelemen et al., 2010). In the present study, thermochemical reduction of 

calcium sulfate (CaSO4) by activated carbon (C), a model compound for solid bitumen, was 

conducted under hydrothermal conditions at elevated temperatures. As CaSO4 is the only sulfur 

source and water is the only hydrogen source initially present in the simulation experiments, any 

H2S formed must arise from TSR. Thermal simulation experiments and thermodynamic analysis 

on the system calcium sulfate-activated carbon-water (CaSO4-C-H2O) were conducted in order 

to investigate the fate of solid bitumens in deep-buried carbonate reservoirs and the 

corresponding formation of H2S. 
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According to the experimental results, the threshold temperature for initiating TSR was only 

300ºC which was lower than most previous TSR simulations using hydrocarbons (340ºC-600ºC: 

e.g. Yue et al., 2006; Pan et al., 2006; Ding et al., 2007, 2008, 2010, 2011; Zhang, S. C. et al., 

2008; Zhang, T. W. et al., 2007, 2008a, 2008b; Amrani et al., 2008, Chen et al., 2009; Lu et al., 

2010). Especially in comparison with hydrocarbons reported in previous field observations and 

simulation studies, water in the present study became the only hydrogen source for the 

generation of H2S. Based on the experimental results, TSR in system CaSO4-C-H2O could be 

written as follows,  

                CaSO4+2C+H2O→CaCO3+H2S+CO2                    (1) 
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Fig.5  Effect of temperatures on standard Gibbs function of molar TSR in systems CaSO4-C-H2O, CaSO4-CH4 

(Yue et al., 2006; Ding et al, 2007, 2010) and MgSO4-CH4(Ding et al, 2008, 2010). 

 

The standard Gibbs free energy of molar TSR in system CaSO4-C-H2O at different 

temperatures was calculated according to the reaction pathway (1) and shown in Fig.1 which also 

included our previous thermodynamic studies on the systems CaSO4-CH4 (Yue et al., 2006; Ding 

et al., 2007, 2010) and MgSO4-CH4 (Ding et al., 2008, 2010). 

 

Fig.1 was divided into three temperature zones, i.e. a BSR zone (0ºC -100ºC: Goldstein and 

Aizenshtat, 1994; NÖth, 1996; Machel, 2001), a TSR zone (100ºC -200ºC: Goldstein and 

Aizenshtat, 1994; NÖth, 1996; Machel, 2001) and a TSR experiment zone (200ºC -600ºC: 

Kiyosu and Krouse, 1990, 1993; Goldhaber and Orr, 1995; Cross et al., 2004; Pan et al., 2006; 

Yue et al., 2006; Ding et al., 2007, 2008, 2010, 2011; Zhang, S. C. et al., 2008; Zhang, T. W. et 

al., 2007, 2008a, 2008b; Amrani et al., 2008, Chen et al., 2009; Lu et a., 2010). The absolute 
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value of Gibbs free energy of the systems CaSO4-CH4, MgSO4-CH4 and CaSO4-C-H2O 

increased with increasing temperature (Fig.1), which implied that the increasing temperature was 

favored. TSR in system CaSO4-C-H2O proceeded spontaneously above 50ºC according to the 

negative values of Gibbs free energy. In the BSR zone and typical oil reservoirs (100ºC -150ºC), 

the relative thermodynamic possibility for TSR was the system CaSO4-CH4>the system 

MgSO4-CH4> the system CaSO4-C-H2O. When temperature was above 150ºC, TSR 

thermodynamically more easily occurred in system CaSO4-C-H2O than in systems MgSO4-CH4 

and CaSO4-CH4, which was confirmed by the experimental results. The present results of the 

simulation experiments are theoretically important for the understanding of the role of solid 

bitumen during TSR. Further research such as kinetics and reaction mechanism on the system 

CaSO4-C-H2O will be investigated in the next work. 
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