Estimating CO$_2$ Saturation from Resistivity Change for Monitoring CO$_2$ Sequestration

Onishi, Kyosuke1, Yoshihiko Ishikawa1, Ziqiu Xue2, Kazuhiko Tsukada1, Yasuhiro Yamada1, Toshifumi Matsuoka1 (1) Kyoto University, Kyoto, Japan (2) Research Institute of Innovative technology for the Earth, Kyoto, Japan

The technique sequestering CO$_2$ into the ground is a high degree of expectation for reducing CO$_2$ emission. The realization of the CO$_2$ sequestration into the coal seam or aquifer must require the confirmation of the stability in long term after the sequestration of CO$_2$. It is considered that measuring electric resistivity is useful to monitor CO$_2$ migration. Because CO$_2$ is electrically bad conductor, the bulk resistivity of rock will increase when formation water is displaced to CO$_2$ in pores.

This report shows the result of the examination of CO$_2$ injection into rock cores in a pressure vessel, which create the same pressure and temperature in deep ground. We measured the change of electric resistivity of rock samples through the injection of CO$_2$, which is composed of gas, liquid or super critical phase. The results indicate the increasing of electric resistivity with CO$_2$ injection. Therefore, the method of electric exploration can observe the CO$_2$ distribution in the ground. Also, we can calculate the replacement ratio using Archie’s equation and the ratio is quite equivalent to the volume of input and output of the experimental system. The estimation from the electric resistivity is considered to have a high reliability.

A CO$_2$ sequestration project was undertaken near Nagaoka in Japan and time-series well loggings were carried out in observation wells. We discuss the time-series CO$_2$ saturation from resistivity change of logging data in the observation wells using Archie’s equation in consideration of the results of the laboratory examination.