Estimating CO_2 Saturation from Resistivity Change for Monitoring CO_2 Sequestration

Onishi, Kyosuke¹, Yoshihiko Ishikawa¹, Ziqiu Xue², Kazuhiko Tsukada¹, Yasuhiro Yamada¹, Toshifumi Matsuoka¹ (1) Kyoto University, Kyoto, Japan (2) Research Institute of Innovative technology for the Earth, Kyoto, Japan

The technique sequestering CO_2 into the ground is a high degree of expectation for reducing CO_2 emission. The realization of the CO_2 sequestration into the coal seam or aquifer must require the confirmation of the stability in long term after the sequestration of CO_2 . It is considered that measuring electric resistivity is useful to monitor CO_2 migration. Because CO_2 is electrically bad conductor, the bulk resistivity of rock will increase when formation water is displaced to CO_2 in pores.

This report shows the result of the examination of CO_2 injection into rock cores in a pressure vessel, which create the same pressure and temperature in deep ground. We measured the change of electric resistivity of rock samples through the injection of CO_2 , which is composed of gas, liquid or super critical phase. The results indicate the increasing of electric resistivity with CO_2 injection. Therefore, the method of electric exploration can observe the CO_2 distribution in the ground. Also, we can calculate the replacement ratio using Archie's equation and the ratio is quite equivalent to the volume of input and output of the experimental system. The estimation from the electric resistivity is considered to have a high reliability.

A CO₂ sequestration project was undertaken near Nagaoka in Japan and timeseries well loggings were carried out in observation wells. We discuss the time-series CO₂ saturation from resistivity change of logging data in the observation wells using Archie's equation in consideration of the results of the laboratory examination.