AAPG Annual Convention and Exhibition

Datapages, Inc.Print this page

Our Current Working Model for Unconventional Tight Petroleum Systems: Oil and Gas


The driving forces for conventional accumulations (structural or stratigraphic traps) are Forces of Buoyancy which are due to differences in densities of hydrocarbons and water. In contrast, the driving forces for unconventional tight accumulations are Forces of Expulsion which are produced by high pressures. That is an enormous difference and creates unconventional petroleum systems that are characterized by very different and distinctive characteristics. The Force of Expulsion pressures are created by the significant increase in volume when any of the three main kerogen types are converted to hydrocarbons. At those conversion times in the burial history, the rocks are already sufficiently tight so the large volumes of generated hydrocarbons cannot efficiently escape through the existing tight pore system thus creating a permeability bottleneck that produces an overpressured compartment over a large area corresponding to the proper thermal oil and gas maturities for that basin. The forces initially created in these source rocks can only go limited distances into adjacent tight reservoirs (clastics or carbonates) above or below the source. The exact distance will vary depending on the pressure increase, matrix permeability, and fractures of that specific tight reservoir system. In general, the distances are small, in the orders of 10s to 100s of feet for oil and larger for more mobile gas systems. Those exact distance numbers are subject to ongoing investigations. Because the system is a pore throat bottleneck with very little or minimum lateral migration, the type of hydrocarbons are closely tied to the thermal maturity required to generate those hydrocarbons. Thus the play concept begins with two important geochemical considerations: (1) where are the source rocks and what are the kerogen types and organic richness (TOC), and (2) where are they mature in the basin for oil, condensate, and gas in the basin. These parameters will very quickly define the fairway for the play. Then one has to add the critical information on the reservoirs themselves: composition (brittleness), thickness, and reservoir quality (matrix porosity and permeability). In summary, these tight unconventional petroleum systems (1) are dynamic and (2) create a regionally inverted petroleum system with water over oil over condensate over gas for source rocks with Type I or II kerogen types.