--> Abstract: Advancements in 3D Structural Analysis of Geothermal Systems, by Drew L. Siler, James E. Faulds, Brett Mayhew, and David McNamara; #120140 (2014)

Datapages, Inc.Print this page

Click to view complete article

Advancements in 3D Structural Analysis of Geothermal Systems

Drew L. Siler¹, James E. Faulds¹, Brett Mayhew¹, and David McNamara²
¹Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV, USA
²Department of Geothermal Science, GNS Science, Avalon, Lower Hutt 5010 New Zealand

Abstract

Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady's geothermal system and a 'greenfield' geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets.

The relatively abundant data set at Brady's, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1:24,000 scale detailed geologic map and cross-sections, 2D seismic reflection profiles and other geophysical data, and downhole temperature data. The 3D geologic model based on these data consists of 61 fault planes, 25 distinct stratigraphic units, and 2 intrusive bodies. Geothermal fluids are produced from a left step-over/relay ramp within the Brady's Fault Zone (BFZ). Under local stress conditions, fault segments that strike NNE-to-NE are most likely to slip and/or dilate, and therefore transmit geothermal fluids. The 3D model defines the locations of discrete fault intersections within the BFZ and indicates that the densest zones of structurally controlled fracture permeability are ~10-to-10s of meters in diameter and plunge ~55° NW-NNW beneath the heart of the BFZ step over. The locations of high intersection density, high fault slip and dilation tendency, high subsurface temperature, and lithologies known to support high fracture permeability are combined to produce 3D 'fairway' maps useful in both assessments of geothermal resource potential and for defining drilling targets.

 

AAPG Search and Discovery Article #120140© 2014 AAPG Hedberg Conference 3D Structural Geologic Interpretation: Earth, Mind and Machine, June 23-27, 2013, Reno, Nevada