[First Hit]

Datapages, Inc.Print this page

Assessment of a Marcellus Shale Prospect Using Seismic, Microseismic, and Completions Data

Scott Singleton and Mark Suda
Rock Solid Images, 2600 S. Gessner Rd., Ste. 650, Houston, Texas 77063

Much attention has recently been focused on modifying the traditional conventional geophysical reservoir characterization workflow to provide outputs that are of use to Previous HitintegratedNext Hit asset teams in Previous HitunconventionalNext Hit resource plays. Geophysicists are consolidating their efforts in four primary areas: prediction of anisotropy from full-azimuth data, prediction of rock properties along the Vfast azimuth (which are the ‘true’ rock properties, having minimal distortion due to vertical fractures), prediction of the three principal stresses, and fracture characterization. We have adopted this philosophy by developing a comprehensive and Previous HitintegratedNext Hit Previous HitunconventionalNext Hit reservoir characterization workflow. The result is a fully Previous HitintegratedNext Hit suite of deliverables that enables the entire asset team to make informed, intelligent decisions on the best course of action in prospect development.

This case study of the Marcellus Shale shows that petrophysics, rock physics, Previous HitgeophysicsNext Hit, and geology can successfully be Previous HitintegratedTop with reservoir and production engineering to characterize the Marcellus and other shale reservoirs. Landing zone rock brittleness as well as pre-existing fractures is shown to significantly impact well production. Therefore, a comprehensive suite of fracture characterization methods (including advanced techniques such as anisotropy and principal stress prediction) are needed to properly determine whether a pre-existing fracture zone will reopen or remain closed when hydrofractured. Singleton,

 

AAPG Search and Discovery Article #90158©2012 GCAGS and GC-SEPM 6nd Annual Convention, Austin, Texas, 21-24 October 2012