Datapages, Inc.Print this page

Ebrom, Daniel1, Philip D. Heppard1, Michael Tompkins1, Leon Thomsen1
(1) BP Amoco, Houston, TX

ABSTRACT: Compaction, Stresses, and Velocity in High Overpressure

An approximation in analyzing pore pressure is to assume that effective stress (stress supported by the rock matrix) is equal to the differential stress (overburden stress minus pore pressure). This is Terzaghi’s relation, and there are good theoretical reasons to expect Terzaghi’s relation to be modified for large effective stresses. Biot’s theory predicts that the ability of pore pressure to reduce effective stress is governed by a multiplier n, equal to (1 – Kb/Kg). Here Kb is the matrix bulk modulus, and Kg is the grain bulk modulus.
If n were equal to 1 regardless of depth, then it would be possible for primary overpressure to maintain a shale in a compaction state corresponding to a very shallow depth. Analysis of a suite of shale P-wave stacking-velocity-derived interval velocities from Tertiary clastic basins distributed around the globe tells a different story. Specifically, the minimum P-wave velocity of shales is given by a best fit relation of 1500 m/s + 0.239 m/s/m*(depth in meters).
If we assume that the lowest shale velocities correspond to sediments with pore pressures almost at the fracture gradient, then we are led to the conclusion that n must be less than 1 in real sediments at depths of interest to the petroleum community. The practical conclusion is that shales can be at a higher pore pressure than we might have predicted based on the assumption of effective stress being equal to differential stress.


AAPG Search and Discovery Article #90026©2004 AAPG Annual Meeting, Dallas, Texas, April 18-21, 2004.