--> Abstract: Climatically Induced Sedimentary Cycles in Pliocene Deep-Water Carbonates, by A. F. Gardulski; #91004 (1991)

Datapages, Inc.Print this page

Climatically Induced Sedimentary Cycles in Pliocene Deep-Water Carbonates

GARDULSKI, ANNE F., Tufts University, Medford, MA

Two DSDP sites (86 and 94) on the Campeche ramp in the southern Gulf of Mexico penetrated more than 100 m of Pliocene pelagic ooze. The ooze is primarily carbonate, with a much smaller volcanic ash component than occurs in some Pleistocene sediments at these sites. Cores recovered from these holes display variations in carbonate mineralogy as well as total carbonate and sand abundances that are correlated with the oxygen isotope stratigraphy. Diagenetic loss of Mg-calcite is complete by the base of the Pleistocene, but aragonite, especially high-Sr aragonite forming algal needles that were transported off the shelf to the slope, persists through upper Pliocene cores. Variations in oxygen isotope ratios in planktonic foraminifera occur throughout the Pliocene, although the amplitude of those cycles is smaller than for the Pleistocene, with its more dramatic glacial-interglacial contrasts. As in overlying Pleistocene slope sediments, cooler intervals correspond with greater abundances of aragonite in the upper Pliocene section, reflecting a shift of the shallow, productive shelf seaward across the ramp surface during times of relatively low sea level. However, the aragonite abundances in the Pliocene are reduced on average compared to the Pleistocene. This difference is due in part to diagenetic loss, but also it likely reflects the overall higher sea level that apparently characterized Pliocene oceans, trapping more algal aragonite landward. Although sea level and climatic fluctuations were indeed less extreme in the Pliocene, they were still sufficient to generate sed mentary cycles in deep-water carbonates.

 

AAPG Search and Discovery Article #91004 © 1991 AAPG Annual Convention Dallas, Texas, April 7-10, 1991 (2009)