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Abstract

The Middle Permian dolostones in the northwest Sichuan Basin (Southwest China) represent significant exploration targets in recent years
because commercial natural gas accumulations have been discovered therein. These coarse-crystalline dolostones, previously interpreted as
hydrothermal dolomite (HTD) related to the end-Middle-Permian Emeishan Large Igneous Province (ELIP) volcanism, were selected for a
combination of in situ U-Pb dating, clumped isotope (A47) thermometry, as well as carbon, oxygen, strontium isotope (5'3C, §'80 and 8/Sr/%Sr)
and trace element analyses, with an attempt to correlate their formation and evolution to the geodynamic evolution of Sichuan Basin, thus
better understanding the distribution of reservoir geobodies in the subsurface. The U-Pb ages of the replacive dolomites (240 to 233.8Ma) were
significantly younger than the eruption of ELIP volcanism (~263 to 258Ma) implying that dolomitization was probably unrelated to this
magmatic event as previously assumed. Instead, these younger ages point to a Middle to Late Triassic dolomitization event that was probably
linked to the Late Triassic compression of the Northern Longmenshan Fold-Thrust Belt (LFTB). Integrated U-Pb ages and A47 thermometry,
together with C-O-Sr isotope and trace element geochemistry, indicate that these coarse-crystalline replacive dolomites were formed at burial
(~2.5 to 2.8km) by hot (100~120 °C) fluids that were derived from Middle Permian or younger seawater, and a later stage (~13 to 6.8Ma)
saddle dolomite cements were precipitated from a hydrothermal fluid with elevated & Sr/%Sr during the Cenozoic deformation of the Northern
LFTB. Vugs and intercrystalline pores in the Middle Permian dolostones were interpreted to be inherited from the precursory limestones that
had experienced meteoric leaching during the Late Permian uplift. This study demonstrates the potential of combined in situ U-Pb
geochronology, A47, thermometry, as well as isotopic and trace element geochemistry for better understanding the formation and evolution of
ancient dolostone reservoirs.
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Introduction

Despite intensive research for more than 200 years, the
origin of dolomites is still full of controversy.

The Dolomites, where dolomite was
discovered in 1791.
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Introduction
@ Dolostones are of economic significance because they often form hydrocarbon reservoir

rocks

@ In Sichuan Basin, one of the most largest petroleum provinces in China, >85% reservoir

rocks are hosted in dolomite sequence
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Introduction

@ Middle Permian carbonates in NW Sichuan Basin represent the recent favorable
exploration target, in which commercial natural gas accumulation has been discovered

€ These shallow-water carbonates are deep-buried (7,000~8,000m) and have been affected
by dolomitization; the formation and evolution of these dolomite reservoirs attract
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#1. End-Middle-Permian (~260Ma) volcanism
(known as Emeishan Large Igneous Province)

[ Recorded by the extensive flooded basalts overlying the Middle Permian carbonates in
Sichuan, Yunnan and Guizhou Provinces of SW China
[0 Had caused regional high thermal regime and plume-induced dome and uplift
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#2. Evolution of Longmenshan Fold-Thrust Belt

103°E 104°E

O An orogeny belt that borders Sichuan Basin and
Tibet Plateau

0 Formed in late Triassic and experienced two major /
deformation in Late Triassic and Cenozoic e

O Potentially had caused tectonic-driven fluid flows
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Previous Study

1 Various dolomitization models have been proposed
1 Recent studies led to the hypothesis that
dolomitization could be related to the end-Middle-
Permian volcanism

--Volcanic eruption immediately after the deposition of
Middle Permian carbonates

--Higher fluid inclusion temperatures dolomites than
the burial-induced temperature

--Highly radiogenic 8’Sr/2éSr values of dolomites
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Field observation

Dolostones are commonly stratiform, with irregular dolomitization front

Dolostone
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Petrography
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Petrography

Gradual transition of Rd1 and Rd2 dolomites Similar CL of Rd1 and Rd2 dolomites
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Petrography

Paragenetic sequence |

Rd1/Rd2: replacive dolomite

4

CD: Euhedral dolomite cement

4

Cal: blocky calcite cement
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SD: saddle dolomite cement

2014-04825-4




0.9

0.7 |

207Pb/206pb
o
w

03|

0.1

Rd1, Rd2 and CD share the
overlapping ages that

indicate a Late Triassic
dolomitization process

CD dolomites from K2-20
Concordia, Y-Intercepts at
228110 & 4997 +22[+24]Ma

N \#(Two LA spots
~
L h n=8

.. CD: 228410 Ma

~
L <
~
L 0 4500 \

~
~
~

3500 @ R

2

12 20 24
238(y /206p

U-Pb ages

207Pb 206pb

207Pb/206pb

0.6

03 |

0.1

0.0

Rd1 dolomites from K2-18
Concordia, Y-Intercepts at
233.81+6.4 & 44291+ 100Ma
MSWD=2.7
n=17

Rd1: 233.8+6.4 Ma

[ N
~
400 N
. . . N ~
12 16 20 24 28

238U/206Pb

Rd2 dolomites from K2-18
Concordia, Y-Intercepts at
234.74+9.0 & 4502+ 190Ma
MSWD=3.4
n=20

Rd2: 234.71+9.0 Ma

4 8 12

16 20 24 2
238U/206Pb




Calcite cements are a bit

younger than the replacive
dolomites, but still indicate
precipitation during the

Late Triassic
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U-Pb ages

Saddle dolomite cements are
significantly younger than any
other diagenetic phases, and
indicate a Miocene precipitation

event
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Implication of U-Pb ages

B Late diagenetic alteration
only took place during tectonic
events

M Dolomitization could be
related to the compressional
deformation of Longmenshan
FTB, rather than Emeishan
Volcanism
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The thinning trend of dolostones from the Longmenshan Front to Sichuan
Basin imply an eastward flow of dolomitizing fluids from the orogenic belt to
the basin, supporting the tectonically driven dolomite model.
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Clumped and stable isotopic geochemistry
reveal two major episodes of fluid flow
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Conclusions

[ Formation of the Middle Permian dolostones in NW Sichuan Basin does
not appear to be related to the Emeishan volcanic event. The U-Pb ages
indicate that they were likely formed in the compressional regime of
the Longmenshan orogenic belt since the Triassic

[ Dolomite diagenetic evolution was affected by two major episodes of
fluid flow in Late Triassic and Cenozoic, both of which were likely
tectonically driven

[ Late diagenetic alteration of these dolostones only took place
during tectonic events. Tectonically driven fluid flow events have
had the greatest impact on late diagenetic history
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