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Abstract

In recent years there have been many developments concerning basin modeling in structurally complex areas. However the full application of
these improvements in 3D modeling is not widespread because it requires the use of 3D structural restoration (or restoration on many cross
sections), which is a time-demanding process that is not always available at the basin scale. Although a standard basin model could give a
faster overview of the petroleum system elements in this kind of basin, it is an option that has to be carefully considered in structured settings
because it may lead to pitfalls that could create a misunderstanding of the basin potential. Although there is not an available regional 3D
structural restoration in the Middle Magdalena Valley Basin (MMVB) of Colombia, we present the main challenges and key alternative
procedures that were used to get a reliable model in an area of 11.000 km? in the central portion of the basin with a grid spacing of 100m. This
model integrates previous basin models, revised seismic interpretation, regional stratigraphy and calibration data from wells. The MMVB is
located between the Central and Eastern Cordillera of Colombia, in the NW portion of the Andean range, which account for more than 2 billion
barrels of production over the last century. Most oil production from this basin comes from structural plays on Tertiary fluvial reservoirs that
range in age between Paleocene to Miocene. While it is evident that it is a mature basin in terms of production on Tertiary structural traps, there
is still uncertainty in the geological and thermal evolution that become constraints to understand other play concepts.

The MMVB is an intramontane basin that has undergone a complex evolution from a divergent to convergent regime, where the present day
geometry is characterized by dipping and repeated faulted beds that represent an inherent problem for paleo-geometric reconstruction by mean
of the back-stripping method used in conventional modeling. Addition of paleothickness and particularly, correction of original thickness is a
procedure commonly used for solving this issue, however taking into account that modeling software use linear interpolation throughout time, a
wrong time selection for the thickness correction could deal to minor corrections or even worst results. In our model, we have focused the
thickness corrections on the most sensible control points that could produce more realistic results, which are those related to the main
deformation events. A comparison between maturity maps derived from models without correction, with original thickness correction and with
paleothickness correction related to deformation timing shows the importance of this fact.



On a similar way, the high variability in the present day heat flow in the MM VB reflects the impact of its complex evolution. Although there
are some studies regarding the thermal model during the Cretaceous rift and post-rift phases, the thermal history interpretation during the
compressive Tertiary phase is not as simple as an interpolation between the heat flow at the end of the Cretaceous and the present day heat
flow. It is important to notice that since Eocene the strong structural deformation changed the geometric setting of the basin and subsequently,
it changed the thermal regime that continue evolving through the Tertiary. We used an alternative method to calculate the Tertiary heat flow
maps that contribute to have a good calibration with the paleothermometers in the MM VB.

In addition to the geometrical and thermal improvements that are presented in our approach, there is further work that is in progress in order to
reduce uncertainty in other petroleum system elements. Considering that in the study area there is a limitation related to the structural
restoration, we are not suggesting that this model could be better than a future one based on a regional 3D-structural model, but it is good
enough to increase our confidence in supporting new exploratory opportunities in the MMVB.
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MMVB - Geological Setting
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MMVB - Geological Setting

itk Basin Geometry in 3D view
(Top Jurassic Surface)

The Post-Eocene sequence is
moderately deformed.
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Basin Modeling Challenges - Geometry
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1) Reconstruction by means of Backstripping

v

Backstripping is the easiest and fastest method to
model the burial history and paleogeometry of the
basin.

Backstripping only works well in non-deformed
basins (sub-horizontal layers)

In deformed settings, backstripping results in
overstimated burial histories and incorrect paleo-
geometries !!!

2) Reconstruction by means of structural restoration

v

Structural restoration is a reliable method in
highly deformed settings.

This kind of basin modeling is a procces that
requieres a lot of time and resourses.

Testing new geometric scenarios requieres
-

completely new models. o \\




Basin Modeling Challenges - Thermal Modeling

How does a thermal model evolve during compressive events?

oxhumation
Internal

ANNANNN

Sedim, Erosion Sedim. Erosion Sedim. Erosion Sedim.

L, Husson & |, Moretti; 2000

The thermal behavior in compressive
settings can be affected by:

* Topography

* Uplift

* Erosion

* Sedimentation rate

* Influx of meteoric water

* Lateral change in sedimentary thickness
* etc
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Implications in MMVB -

Present day Dip Map
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Implications in MMVB - Geometry

Backstripping in deformed areas
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Implications in MMVB - Geometry

Thermal Maturity (%Ro) — Tablazo Fm.

Non paleo-thickness Original paleo-thickness Paleo-thickness correction Present day maturity is closely

correction correction related to deformation similar in all models.

Modeled maturity at 65ma is
significantly different. Non-
corrected model has higher
maturity in more deformed areas

Although all models could fit
calibration parameters, they reflect
different basin evolutions, that can
impact the basin prospectivity.
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Proposed Workflow - Geometry

Workflow for Paleo-geometry correction in deformed areas
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Implications in MMVB - Thermal Modeling

PRESENT DAY THERMAL GRADIENT Average Thermal Gradient:
gsoooo‘ _ - -100000‘ , 1050000 g 21.87 °C/km (1.18 °F/100ft)
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Implications in MMVB -

Thermal Modeling

HEAT FLOW EVOLUTION IN THE MMV
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There is an accepted thermal history during the distensive and thermal subsidence phase (Estimated by means of Mackenzie)
The thermal development during the compressive phase is unknow.
Present day heat flow ranges between 25 and 43 mW/m?

How did the heat flow model evolve during compressive events? | \\
“The present is the key to the past” ;\



Implications in MMVB - Thermal Modeling

THERMAL GRADIENT DATA BASEMENT DEPTH
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* There is a positive correlation between Thermal Gradient and Basement depth.
* This similarity can be used to understand the thermal gradient distribution.




Implications in MMVB - Thermal Modeling

THERMAL GRADIENT CORRELATIONS
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Implications in MMVB - Thermal Modeling

THERMAL GRADIENT HEAT FLOW
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Implications in MMVB - Thermal Modeling
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Implications in MMVB - Thermal Modeling
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Implications in MMVB - Thermal Modeling
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Vitrinite Reflectance [%Ro]

Implications in MMVB - Thermal Modeling .
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Proposed Workflow - Thermal Modeling

Workflow for an area where tectonic events have
disturbed the current thermal model

Build a thermal gradient database

v

Simulate a preliminary model

\
Identify parameters that have correlation with the
thermal gradient

1
1
4

Calculate thermal gradient and heat flow maps

Simulate a new model to check calibration for present
day temperatures

A

\ 4
Define control points in time to create paleo-
heat flow maps

v

Calculate the relative change of correlation
parameters at that time

A 4

Simulate a model to check °
calibration with
Calculate paleo-heat flow maps e

paleothermometers
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Alternative workflow for 3D Basin Modeling in areas of structural complexity

CONCLUSIONS

Proposed workflow for basin modeling
on structured settings can provide:

~ v' Geometrical and thermal evolution
consistent with tectonic history

v" Good fit to Calibration parameters

v More reliable thermal predictions in
‘ areas without data

v" More convincing Generation,

Expulsion and Migration histories
than non-corrected models




ENERGIA PARA EL FUTURO

Para uso restringido en Ecopetrol S.A. Todos los derechos reservados. Ninguna parte de esta presentacion puede ser
reproducida o utilizada en ninguna forma o por ninglin medio sin permiso explicito de Ecopetrol S.A.




