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Abstract 

This work presents a sequence stratigraphic framework for the Upper Oligocene - Lower Miocene C6-C1 members of the Carbonera Formation 

in the Llanos Basin, Colombia. In the interval corresponding to the C5 member, facies associations that comprise middle shoreface, tidal 

channels and bars, tidal flat deposits, brackish bay, tidal-fluvial channels, and central estuary have been identified through the integration of 

core descriptions and wireline logs. The vertical assemblage of the recognized facies associations permits the definition of several cycles of 

transgression and regression, as well as episodes of relative sea-level fall and their consequent fluvial incision. Basinward shifts of facies, 

lateral changes in well-log motifs, and seismic amplitude anomalies allow the interpretation of incised-valley systems overlying deposits 

associated with marginal and shallow marine environments, which also present channelized sand bodies. Consequently, the sedimentary and 

stratigraphic architecture is composed of an interspersed set of channels with different genetic origins and contrasting potentials in terms of 

petroleum production. Maximum flooding surfaces, subaerial unconformities, and transgressive ravinement surfaces are the significant 

stratigraphic surfaces identified, which separate progradational and retrogradational stages and define sequence boundaries. In addition to the 

C5 member, a sequence stratigraphic model for the interval corresponding to the C6-C1 members of the Carbonera Formation is presented 

based on cuttings, well-log stacking patterns, and interpretation of 3D seismic horizon and time slices. In total, nine regressive-transgressive 

cycles (i.e., genetic stratigraphic sequences) are interpreted for the interval studied. The proposed stratigraphic framework relates oil 

occurrences and currently producing intervals with stratigraphic surfaces and permits a consistent classification of the petrophysical properties, 

establishing several families that are genetically related. The sedimentological descriptions of the Carbonera C5 member and the proposed 

sequence stratigraphic model highlight the marine influence in the deposition of the Carbonera Formation. Furthermore, this work emphasizes 

the role of relative sea-level fluctuations in deposition and erosion in coastal areas during tectonically active periods in the foreland Llanos 

Basin. 
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Time slice MFS C4 +28 ms

The vertical assembly of the facies
association interpreted in several
cores of the C5 member of the
Carbonera formation, allows the
interpretation of incised-valley
systems overlying deposits associated
with marginal and shallow marine
environments, which also present
channelized sand bodies.

Consequently, the sedimentary and
stratigraphic architecture is
composed of an interspersed set of
channels with different genetic
origins and contrasting potentials in
terms of petroleum production.
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The Llanos basin is the most prolific basin in
Colombia. This foreland system has major oil
accumulations associated with the structural
traps in the orogenic front, as well as
structural and stratigraphic traps in the
foredeep portion.

• Cretaceous-Early Eocene contractional
deformation

• Middle Eocene tectonic quiescence

• Late Eocene to Pleistocene/Holocene
abrupt shortening and exhumation.

Modified from Barrero et al. (2007) and Moreno et al. (2011).
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The Carbonera Formation has been litologically subdivided into 
8 informal units with odd numbers referring to sandstones and 
even numbers assigned to mudstones. 

The Carbonera Formation
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The Carbonera Formation - Sedimentology

The vertical stacking 
of facies indicates 
marine influence in 
the sedimentation 
punctuated by tidal-
fluvial processes

Sedimentary characteristics of the interval described, were 
documented from three 
stratigraphic sections
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Normal regression is represented by prograding wave-and storm-
dominated shoreface environments capped at top by tidal flats that 
indicates the transition from shallow marine to coastal systems

In zones of high influence of mouth river processes, IHS  represents 
highly sinuous channelized-forms interpreted as unincised
distributary tidal channels framed in a deltaic context influenced by 
tides

Regressive stage

The availability of core data permits to illustrate a schematic sequence-stratigraphic behavior
of all the identified genetic sequences 
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The top of the tidal flat deposits is capped by a paleosol, which 
indicates periods of subaerial exposure and non-deposition 

In zones of high influence of mouth river processes, the 
relative sea-level fall that accompanied the forced regressive 
stage is represented by the incision of the underlying strata

Regressive stage



The accommodation created was subsequently filled by fluvial-
estuarine deposits corresponding to the tidal-fluvial, tidal channels 
and central estuary facies associations

Transgressive stage

Cored-1

150

Sand-S ize

c

d

e

g
GR

0

N

A basinward shift of facies, is recognized by the juxtaposition of tidal-
fluvial channels over brackish bay water deposits 



Transgressive stage

In areas with low influence of river mouth processes, paleosols are 
topped by a scour surface which marks a period of coastal erosion 
caused by a transgressive stage 

The unconformable contact between the paleosol below and brackish 
bay deposits above, corresponds to a transgressive ravinement surface 
(TRS) reworking and replacing the subaerial unconformity (TRS/SU) 
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Transgressive stage

At the top, a MFS is indicated by extensive coal beds, maximum peaks of gamma 
ray and a change in the stacking pattern  that can be traced in most of the wells 
correlated .

The persistent tidal influence within the sand bodies located above the subaerial 
unconformity permit the interpretation that the genetic stratigraphic sequences 
identified are composed only of transgressive and highstand system tracts
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Transgressive stage

The interpreted genetic stratigraphic sequences 
reflect transgressive and regressive shifts of the 
distal shoreline of the interior seaway across the 
flexural forebulge of the foreland system

A mechanism that controls accommodation, is the interplay between dynamic subsidence 
and flexural tectonics during periods of tectonic loading and quiescence 
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Porosity and permeability distribution, place the incised channels 
as main stratigraphic target for exploration and production in 
comparison with their unincised counterpart.

Petrophysical impact



• The Carbonera C5 member records a suite of facies associations that shows a broad range of depositional
environments from fluvial to shallow marine. The vertical assemblage of the facies associations reveals
periods of relative sea-level fall and subsequent incision of the underlying sediments.

• Due to the nature of the incision, fluvial-dominated environments and distributary tidal channels coexist
laterally; this causes an overlapping of channels with different sedimentological and stratigraphic origins.

• The difference between incised and unincised channels is also observed in the porosity and permeability
distribution.

• This sequence stratigraphic framework provides a better understanding of the interplay between
tectonics and sedimentation in the foreland Llanos Basin during a period of major westward advance of
the Eastern Cordillera.

Conclusions
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