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Abstract

Well-exposed outcrops of the Lower Cretaceous Burro Canyon Formation in the southwestern Piceance Basin, Colorado, are evaluated along a
48-mile (77 km) transect for identification of depositional environments, fluvial architectures, and sequence stratigraphy. The Burro Canyon
Formation in the area represents a sequence deposited unconformably over the Jurassic Morrison Formation and truncated by a regional
unconformity that defines the base of the Dakota Formation. The architecture of these fluvial deposits is described using seven composed
measured sections combined with eight UAV-based outcrop models, core, and well-log data. Analysis of facies, architectural elements and
bounding surfaces allows for determination and mapping of the resulting depositional environments that are placed in a sequence-stratigraphic
context.

The Burro Canyon Formation in the area represents local incised-valley fills comprised of sandstone-rich amalgamated channel complexes
overlain by non-amalgamated channel complexes. Deposits within the amalgamated channel complex interval include multiple upward-fining,
conglomerate-to-sandstone deposits recognized as unit bars and bar sets. These deposits are interpreted to result from lateral and down-stream
accretion, which is characteristic of low-sinuosity braided-fluvial environments. Channel-fill architectural elements exhibit cross-bedding and
numerous truncated contacts and are interpreted to have formed during periods when the geomorphic base level was relatively low (lower to
moderate accommodation). Vertically and laterally stacked channel-fill elements (N= 131) exhibit an apparent-width range of 137-1300 feet
(40-420 m) and a thickness range of 5-60 feet (1.5-18 m). The sequence transitions upward into non-amalgamated channel-complex deposits
that contain inclined-heterolithic strata interbedded with mudstone-drape successions deposited by low net-to-gross, high-sinuosity braided- to
meandering-fluvial environments. Mudstone-prone intervals of the nonamalgamated channel complex contain isolated channel-fill elements
interbedded with floodplain mudstones and represent a period of relatively high base level. Associated channel-fill elements range in apparent
width from 200-1000 feet (60-300 m) and thickness from 20-30 feet (6-9 m). These fluvial deposits serve as outcrop analogs for subsurface
interpretations and development of hydrocarbons in similar reservoirs.
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Geological Setting - Paleogeography

‘m‘ Burro Canyon Formation Kbc

(Cedar Mountain Formation equivalent)

v" Aptian/Albian ~ 100 Ma
v Foreland basin setting
v" Alluvial plain environment
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Geological setting- strat Column
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Data set

° 1 Burro Canyon Outcrop
ﬁ o ® »® o @ Buro Canyon Wells
o ° ¥ Digital Outerop Model
o® % Measured Section
® mi 10
® . o 0O—Tm 16
E 2o E
. .I: / & .
Mack Iﬁdge Mitchell ® ®
¥ \\'of 5 Fésgfal
-,
< °
}\ Grand Ju {ICIIOI] )
. .
Iﬂ‘\_, r
C%;‘ \ “ﬂutewateg,, ------ f_ ‘
S Qeel Creek T oA
"*-|" '--T.',./ _,’
) k ﬁ' &
o ,ﬁRattlesnake e
sl
gm
\
o E Del
Piceance Basin )

I

11a

v Mesa and Delta counties

v" Six outcrop locations

v ~1500 ft of measured
section from five

locations

v' 551 Paleocurrent
measurements

v 48 wells with log data

| v Six 3-D outcrop
reconstructions



Methods
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Methods — Measured sections

Composited Escalante Canyon Measured Section
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Methods - UAV
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Methods - UAV

North side Escalante Canyon
3D photogrammetry reconstruction v Aerial and oblique

grids of photographs

v Photo editing before
reconstruction

v >70% overlap between
photos

v Ground control points
In each outcrop




Fluvial Architecture

Hierarchy of Alluvial Strata
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Stratigraphic measured sections - Fluvial Architecture
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Fluvial Architecture - UAV-models
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Fluvial Architecture - EOD
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Fluvial Architecture — EOD Lower interval
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Fluvial Architecture — EOD upper interval
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EOD well-log correlations and regional thickness map
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EOD Regional thickness map
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Fluvial sequence stratigraphy
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Fluvial sequence stratigraphy
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Fluvial sequence stratigraphy
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Conclusions

* Kbc corresponds to one depositional sequence subdivided
Into an upper interval (aggradational) and a lower interval
(transitional)

* Two Intermediate-scale architectural elements were defined,
channel fill and floodplain that compose larger-scale
architectural

°* The lower interval is characterized by conglomeratic and
coarse sandstone deposits, laterally extensive and
deposited by braided channels within an incised valley

°* The upper interval is characterized by non-amalgamated
channel complex elements deposited by low sinuosity to
anastomosing channels within an alluvial plain
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