Geochemical Interpretation on Clumped and Position-Specific Isotopes in Natural Gas*

Daniel Xia¹ and Yongli Gao²

Search and Discovery Article #42563 (2020)**
Posted October 26, 2020

*Adapted from oral presentation accepted for the 2020 AAPG Annual Convention and Exhibition online meeting, September 29 – October 1, 2020
**Datapages © 2020 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/42563Xia2020

¹Apache Corporation, Houston, TX, USA (dnlxia@gmail.com)
²Department of Geosciences, UTSA, The University of Texas at San Antonio, San Antonio, TX, USA

Abstract

In the past decade some special isotopic compositions of hydrocarbon gas have been measurable and frequently reported, including the clumped isotopic compositions of methane (Δ¹³CH₃D and Δ¹²CH₂D₂), clumped isotopic composition of ethane (Δ¹³C₂H₆), and position-specific (“intra-molecular”) carbon or hydrogen isotopic compositions in propane or normal butane. As for the interpretation on the data measured from natural gas, most previous works assumed isotopic equilibria, so that these special isotopic compositions can be applied as “geothermometers” of oil and gas accumulations. This assumption contradicts the well-established understanding on petroleum systems, that is, the generation and cracking of hydrocarbons are kinetically controlled (both time and temperature are governing factors), non-equilibrated and continuous processes. There is no single temperature point of hydrocarbon generation, migration, or accumulation. The concepts of “geothermometers” and “equilibrium temperature” are inapplicable to an oil or gas reservoir.

To understand the dependence of clumped and position-specific isotopic compositions on geological and geochemical factors, this work conducts chemical and numerical analyses on isotope distributions during the formation and alteration of oil and gas reservoirs, including biogenic and thermal generation, thermal cracking, and thermochemical sulfate reduction. Because hydrogen atoms in a hydrocarbon molecule come from two precursors during its generation reaction, isotopic compositions involving hydrogen/deuterium (bulk hydrogen isotopic composition δD, clumped isotopic compositions Δ¹³CH₃D and Δ¹²CH₂D₂, and position specific δD) demand more kinetic analysis on reaction steps and have more complicated fractionation patterns than the carbon isotopic composition δ¹³C. Results show that major factors controlling special isotopic compositions are still the same as those controlling conventional ones (δ¹³C and δD) of hydrocarbon gases: precursor, thermal history, and accumulating efficiency (continuous vs. instantaneous accumulation). Temperature is not the only factor determining specific isotopic compositions. Clumped and position-specific isotopic compositions may reverse at high thermal maturity, the same as δ¹³C of ethane and propane, and are even less possible to be applied as “geothermometers”.

Overall, chemical kinetic analyses and numerical simulations are more demanding to interpret clumped or position-specific isotopic compositions than to interpret δ¹³C of natural gas. While these special isotopic compositions may provide more reaction details during hydrocarbon generation, preservation and alteration, oversimplified assumptions and correlations should be avoided during the interpretation.
References Cited

Geochemical Interpretation on Clumped and Position-Specific Isotopes in Natural Gas

Daniel Xia (Apache Corporation, daniel.xia@apachecorp.com)
Yongli Gao (UTSA, yongli.gao@utsa.edu)
Special isotopes and analytical methods

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Clumped isotopes</th>
<th>Position-specific isotopes (PSI) of C₃H₈</th>
</tr>
</thead>
</table>
| | Abundances of methane molecules with two isotopically heavy atoms (double substituted) | Difference in δ¹³C between the **middle** and the **end** carbon atoms
δ¹³C_{middle} – δ¹³C_{end} |
| | Non-substituted: ¹²CH₄ | Difference in δD between the hydrogen atoms connecting to the **middle** and the **end** carbon atoms
δD_{middle} – δD_{end} |
| | Conventional isotope (bulk isotope): Single substitution ¹²CH₃D and ¹³CH₄ | |
| | “Clumped isotope”: Double substitution ¹²CH₂D₂ and ¹³CH₃D | |

<table>
<thead>
<tr>
<th>Analytical methods</th>
<th>Mass Spectroscopy</th>
<th>Laser Spectroscopy</th>
<th>Nuclear Magnetic Resonance (NMR)</th>
</tr>
</thead>
</table>
| | ¹³CH₃D and ¹²CH₂D₂: Unresolved (Stolper et al., 2014), **Resolved** (Young et al., 2017)
¹³C₂H₆ (Clog et al., 2017; *for interpretation see Peterson et al., 2018*) | ¹³CH₃D (Ono et al., 2014) | |
| | PSI δ¹³C after offline enzyme C₃ cleavage (Gao et al., 2016) | |
| | PSI δ¹³C after online C₃ pyrolysis (Gilbert et al., 2016) | |
| | PSI δ¹³C and PSI δD (Liu et al., 2018) | |
Most previous interpretations: calculating an “equilibrated temperature” as the generation or charging temperature

Contradiction to petroleum geological and geochemical observations:
- Gas generation/expulsion is continuous; no single “generation” or “charging” temperature
- If it were a temperature equilibrated at some final state in geology, why it’s not the temperature of:
 - Reservoir (especially after cooling due to uplift and erosion)
 - Production
 - Sampling/Storage

Assuming equilibrium between isotopologues:

\[^{13}\text{CH}_4 + ^{12}\text{CH}_3\text{D} \leftrightarrow ^{13}\text{CH}_3\text{D} + ^{12}\text{CH}_4 \]

\[^{12}\text{CH}_3\text{D} + ^{12}\text{CH}_3\text{D} \leftrightarrow ^{12}\text{CH}_2\text{D}_2 + ^{12}\text{CH}_4 \]

Gas generation not at a single temperature!

(Xia and Gao: Geochemical Interpretation on Clumped and Position-Specific Isotopes in Natural Gas)
Isotope distribution during gas generation

- If there is no any interfering factors, clumped isotope distribution is random:

\[
\frac{1^{3} \text{C} \text{H}_3 \text{D}}{1^{2} \text{C} \text{H}_4} = \left(\frac{1^{3} \text{C} \text{H}_4}{1^{2} \text{C} \text{H}_4} \right) \left(\frac{1^{2} \text{C} \text{H}_3 \text{D}}{1^{2} \text{C} \text{H}_4} \right)
\]

\[
\frac{1^{2} \text{C} \text{H}_2 \text{D}_2}{1^{2} \text{C} \text{H}_4} = \frac{3}{8} \left(\frac{1^{2} \text{C} \text{H}_3 \text{D}}{1^{2} \text{C} \text{H}_4} \right)^2
\]

Picking up 4 H or D atoms to form a methane molecule

- **n** atoms of H, D/H = x, then **xn** atoms of D

- Ways to form a CH\(_4\): \(\binom{n}{4} = \frac{n!}{4!(n-4)!} \)

- to form a CH\(_3\)D: \(\binom{n}{3} \binom{xn}{1} = \frac{n!}{3!(n-3)!} \times n \)

- to form a CH\(_2\)D\(_2\): \(\binom{n}{2} \binom{xn}{2} = \frac{n!}{2!(n-2)!} \times \frac{(xn)!}{2!(xn-2)!} \)

Because \(n \) is extremely large,

\[
\frac{\text{CH}_3\text{D}/\text{CH}_4}{\text{CH}_2\text{D}_2/\text{CH}_4} = 4x; \frac{\text{CH}_2\text{D}_2/\text{CH}_4}{(\text{CH}_3\text{D})^2} = 3 \times \frac{3}{8}
\]
Clumped isotopic composition: Definition

- Clumped isotopes defined as deviation from random distribution

\[\Delta^{13}{CH_3D} = \left[\frac{^{13}CH_3D \times ^{12}CH_4}{^{13}CH_4 \times ^{12}CH_3D} - 1 \right] \times 1000 \%
\]

\[\Delta^{12}{CH_2D_2} = \left[\frac{^{12}CH_2D_2 \times ^{12}CH_4}{^{12}CH_3D^2} / \frac{3}{8} - 1 \right] \times 1000 \%
\]

- Not defined as deviation from thermodynamically equilibrated distribution

 - Avoiding presumptions of isotope exchange and equilibrating in many previous papers

 - Deviation from random distribution and deviation from equilibrium are mathematically equivalent

- As the definitions are not relative to a fixed isotope standard (PDB in \(\delta^{13}C \) or SMOW in \(\deltaD \)), mixing is not linear

\[\delta_{mix} = \frac{a \delta_A + b \delta_B}{a + b} \quad \checkmark \quad \text{...... it works}
\]

\[\Delta_{mix} = \frac{a \Delta_A + b \Delta_B}{a + b} \quad \xmark \quad \text{...... it doesn’t work!}
\]
Kinetic isotope effect (KIE): Deviation from random distribution

○ Normal KIE:
 ◦ 13C-12C or D-C breaks slower than 12C-12C or H-C bonds
 ◦ Products more negative in δ^{13}C and δ^D than precursors

○ Inverse KIE: Opposite to normal KIE
 ◦ Due to special reaction steps or transition states
 ◦ Not rare in biochemical reactions
 ◦ Possible in thermal cracking, but not well acknowledged in petroleum geochemistry
 ◦ Causing isotope reversal with respect of thermal maturity (“rollover”)
 or δ^{13}C$_{CH4} > \delta^{13}$C$_{C2H6} > \delta^{13}$C$_{C3H8} > \delta^{13}$C$_{nC4H10}$
 ◦ Not a signature of “abiotic synthesis gas”
KIE during thermal generation of methane

- 13C fractionation: simple; model established (Tang et al., 2000)
- H/D fractionation and clumped isotope distribution
 - Hydrogen has two sources (methyl and capping hydrogen atom)
 - Two kinds of deuterium KIE: primary and secondary DKIE
 - Dramatically more entangled than 13C
Hydrogen isotope exchange

- Influences δD, $\Delta^{13}CH_3D$ and $\Delta^{12}CH_2D_2$ of methane
- Often oversimplified and inappropriately assumed to be equilibrated, for example:

$$CH_4 + HO\text{D} \leftrightarrow CH_3D + H_2O$$

Should be evaluated by investigating detailed reaction steps

- Free radicals on kerogen or pyrobitumen catalyze hydrogen exchange reactions
 - Possible at high thermal maturity or high temperature
 - Accelerate the cracking of ethane and propane in dry gas window (Xia & Gao 2018)

Initiation: methane converting to methyl radical; e.g.
- $CH_4 + Y\cdot \rightarrow CH_3\cdot + YH$
- $CH_2D_2 + Y\cdot \rightarrow CH_2D\cdot + YD$

Propagation: hydrogen exchange between methane and methyl radical; e.g.
- $^{12}CH_3D + ^{12}CH_2D\cdot \rightarrow ^{12}CH_3\cdot + ^{12}CH_2D_2$
- $^{13}CH_3D + ^{12}CH_3\cdot \rightarrow ^{13}CH_2D\cdot + ^{12}CH_4$

Termination: methyl radical converting to methane; e.g.
- $CH_3\cdot + YD \rightarrow CH_3D + Y\cdot$
- $CH_2D\cdot + YH \rightarrow CH_3D + Y\cdot$
Methane from coal pyrolysis: clumped isotope disequilibrium revealed (Shuai et al., 2018)

Kinetic model (parameters well constrained) can explain all the observed phenomena (Xia & Gao, 2019)
- Jump of δD at high temperature: hydrogen exchange (kerogen as catalyst)
- Clumped isotopes:
 - Kinetically governed
 - Depletion (anticlumping): because methyl and capping H from two sources
 - Equilibrating due to hydrogen exchange
- Clumped isotope not a geothermometer
Clumped isotopes of methane in thermogenic gas

- Like other ratios in petroleum geochemistry (e.g. GOR, C7+%, wetness, iC4/nC4), isotope ratios are governed by:
 - What chemical reactions occurred: Cracking? Biodegradation? Sulfate reduction?
 - Reaction extent: Transformation ratio (TR) or thermal maturity (Ro)
 - Precursor compositions
 - Extent of accumulation (instantaneous or cumulative?)

- Data can be explained in kinetic isotopic fractionation; not necessarily equilibrated

- Specialty of clumped isotopes: not simply increase or decrease with thermal maturity (nonmonotonic)
 - Reason: anticlumping; hydrogen exchange; non-linear mixing

Graph Details

- **Graph 1:**
 - **Y-axis:** δ²⁶⁰C₄H₄ (%)
 - **X-axis:** Ro (%)
 - Plots of Last 10% cumulated, Last 50% cumulated, Gas samples: Bakken or Marcellus, No expulsion (or 100% cumulative)

- **Graph 2:**
 - **Y-axis:** δD₄H₄ (%)
 - **X-axis:** Ro (%)
 - Plots of Gas samples: Bakken & Marcellus

- **Graph 3:**
 - **Y-axis:** Δ²⁶⁰S₃CH₃-D₂ (%) / Δ²⁶⁰S₄CH₃-D₂ (%) / Δ²⁶⁰S₃CH₃-D₂ (%) / Δ²⁶⁰S₄CH₃-D₂ (%)
 - **X-axis:** Ro (%)
 - Plots of No expulsion (or 100% cumulative)

Legend:
- Last 10% cumulated
- Last 50% cumulated
- Gas samples: Bakken or Marcellus
- No expulsion (or 100% cumulative)
- Gas samples: Bakken & Marcellus
- Ordovician associate gas, Ontario
- Marcellus
- Silurian biogas, Michigan Basin
- Devonian associate gas, Ontario

Xia and Gao: Geochemical Interpretation on Clumped and Position-Specific Isotopes in Natural Gas
Four hydrogenation steps from CO₂ to CH₄ (methanogenesis)

- If some steps have stronger or weaker DKIEs than the others, then CH₂D₂ depletion occurs.

 - Suppose $\alpha_1 = 0.6$, $\alpha_2 = \alpha_3 = \alpha_4 = 1$, then $\Delta^{12}\text{CH}_2\text{D}_2 = -\left(1-\frac{\alpha}{3+\alpha}\right)^2 = -12\%$ (same if $\alpha_1 = \alpha_2 = \alpha_3 = 0.6$, $\alpha_4 = 1$)

 - Suppose $\alpha_1 = \alpha_2 = 0.6$, $\alpha_3 = \alpha_4 = 1$, then $\Delta^{12}\text{CH}_2\text{D}_2 = -\frac{1}{3}\left(1-\frac{\alpha}{1+\alpha}\right)^2 = -21\%$

 - Explanation with a strong DKIE ($\alpha < 0.1$) from “Quantum Tunneling Effect” is unnecessary!

\[
\Delta^{12}\text{CH}_2\text{D}_2 = \frac{(\alpha_1 - \alpha_2)^2 + (\alpha_1 - \alpha_3)^2 + (\alpha_1 - \alpha_4)^2 + (\alpha_2 - \alpha_3)^2 + (\alpha_2 - \alpha_4)^2 + (\alpha_3 - \alpha_4)^2}{3(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^2} \times 1000\%
\]
Position-specific isotope (PSI) fractionation: depending on reaction steps of C_3H_8 generation

Correlating the position-specific isotope to conventional isotopes

(This analysis follows Chung et al. 1988)

<table>
<thead>
<tr>
<th>Reaction mechanism</th>
<th>δ^{13}C_{3, middle} – δ^{13}C_{3, end}</th>
<th>δD_{3,middle} – δD_{3, end}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerogen → n-propyl → propane</td>
<td>3(δ^{13}C_{propane} – δ^{13}C_{ethane})</td>
<td>4 (δD_{propane} – δD_{ethane})</td>
</tr>
<tr>
<td>(cracking) (hydrogen shift) (hydrogen capping) Kerogen → n-propyl → isopropyl → propane</td>
<td>(Xia & Gao, 2017)</td>
<td>−8 (δD_{propane} – δD_{ethane})</td>
</tr>
<tr>
<td>Kerogen → isopropyl → propane</td>
<td>−6 (δ^{13}C_{propane} – δ^{13}C_{ethane})</td>
<td></td>
</tr>
</tbody>
</table>

\[\delta^{13}C_{2} = \frac{1}{2}(\delta^{13}C_a + \delta^{13}C_b) \]
\[\delta^{13}C_{3} = \frac{1}{3}(\delta^{13}C_a + \delta^{13}C_b + \delta^{13}C_b) \]
\[\delta^{13}C_{3} - \delta^{13}C_{2} = \frac{1}{6}(\delta^{13}C_b - \delta^{13}C_a) \]
\[\delta^{13}C_{3, end} = \frac{1}{2}(\delta^{13}C_a + \delta^{13}C_b) \]
\[\delta^{13}C_{3, middle} = \delta^{13}C_b \]
\[\delta^{13}C_{3, middle} - \delta^{13}C_{3, end} = \frac{1}{2}(\delta^{13}C_b - \delta^{13}C_a) \]

\[\delta^{13}C_{3} = \frac{1}{3}(\delta^{13}C_a + \delta^{13}C_b + \delta^{13}C_b) \]
\[\delta^{13}C_{3} - \delta^{13}C_{2} = \frac{1}{6}(\delta^{13}C_b - \delta^{13}C_a) \]
\[\delta^{13}C_{3, end} = \frac{1}{2}(\delta^{13}C_a + \delta^{13}C_b) \]
\[\delta^{13}C_{3, middle} = \delta^{13}C_b \]
\[\delta^{13}C_{3, middle} - \delta^{13}C_{3, end} = \frac{1}{2}(\delta^{13}C_b - \delta^{13}C_a) \]

(a: strong 13C KIE; b: weak 13C KIE)
Interpreting position-specific isotope (PSI) during propane generation

- PSI δ^{13}C: majority of propane is from n-propyl
- PSI δD: n-propyl \rightarrow isopropyl (hydrogen shift) is common
- Inverse trends explainable with a random distribution of cracking position on kerogen side chains
 - Don’t overinterpret (esp. with a mixing model) any isotope reversal trends; they may just from intrinsic behaviors of a single kinetic process!

Modeling results of random cutting on kerogen side chains.

For a random cutting model see Peterson et al. (2018).
Scheme of isotope fractionation:

- 13C substitution has KIE on the activation of adjacent C-C bond(s)

Expected results: PSI δ^{13}C trends resemble bulk δ^{13}C

- Enrichment of 13C in the middle carbon due to normal 13C KIE during TSR
- Depletion (or “rollover”) of the middle carbon due to inverse 13C KIE during propane cracking in dry gas window

Bulk δ^{13}C$_{\text{propane}}$ data from Mankiewicz et al. (2009) and Zumberge et al. (2012); for reaction mechanisms see Xia et al. (2014); Xia and Gao (2018).

Xia and Gao: Geochemical Interpretation on Clumped and Position-Specific Isotopes in Natural Gas
Summary: role of special isotopes in petroleum geochemistry

- Clumped isotope answers:
 “Have atoms in each molecule experienced an identical chemical process?”
 If depletion: No

- Position-specific isotope answers:
 “Do atoms in each molecule have an identical KIE?”
 If intra-molecular fractionation: No

- May improve understanding geochemical signatures during hydrocarbon generation/alteration (reaction steps; hydrogen exchange; isotope fractionation), rather than provide direct additional information for routine petroleum systems analysis (kerogen type, thermal maturity, generating/charging time, accumulation efficiency)

- Data interpretation requires chemical kinetic analysis and numerical simulations

- Empirical correlations, oversimplifications and unrealistic assumptions (esp. equilibrium) result in misinterpretations
 - Not as a “geothermometer” for hydrocarbon generation or charging

