Role of Geology Operation Facing the Subsurface Uncertainties, in Mitigation, While Drilling and Logging in The Mahakam Delta*

Rio Sitorus¹, Roy Lesmana¹, Wahyu Pramono¹, Rian Ikhsan¹, and Gustiadi Rosa¹

Abstract

Operation in mature fields in the Mahakam Delta are becoming more complex and challenging. This is due to reservoir connectivity and pressure uncertainty where some reservoirs are already depleted and others might still be under virgin or high pressure conditions, and both conditions could be drilled in the same drilling phase. This can create risks of kicks during drilling, drilling BHA (bottom hole assemble) or wireline tool string stuck during drilling and logging, and a tight drilling window. This complexity is also caused by the distance between the reservoir target and platform being too far which may cause the well bore to become highly deviated. Continuous improvement has been done by Pertamina Hulu Mahakam (PHM), including for pore pressure and geomechanic model. Since 2013, the dedicated in-house pore pressure and geomechanic team has been building support for drilling preparation and operation. Some study has been performed to minimize the uncertainty, such as combination of anamorphous of stress and Eaton calculation to create more accurate shale pressure prediction, methodology to calculate effect of depletion to fracture pressure in reservoirs, digitalization model for quick pressure evaluation and calculations of pump stroke vs. connection gas peak to estimate more accurately the source of ballooning during drilling operations.

With a dedicated integrated geoscience team, the result of prediction has become more accurate due to knowledge and integration between all entities, and can be optimized to create the pore pressure and fracture gradient (PPFG) prediction. This has been shown where drilling problems due to pressure have been reduced and optimized for well design.

Many efforts have also been conducted in data acquisition aspects. For wireline logging operations, improvement for probe type, displacement unit, high tension cable, advance fluid analysis sensor, modification of bottom tool wireline string to allow the tool run smoothly in highly deviated wells, and also cable creep for probe positioning have been implemented in Mahakam Delta fields operations. For mudlogging, some techniques are improving and being optimized, such as constant volume degasser is mandatory for gas out to have accurate gas reading, and gas while drilling (GWD) analysis to support fluid interpretation. All these efforts and continuation for improvements are needed to keep well operations safe, efficient and economic.
Role of Geology Operation Facing the Subsurface Uncertainties, in Mitigation, While Drilling and Logging in The Mahakam Delta

Rio Sitorus, R. Lesmana, W. Pramono, R. Ikhsan, and G. Rosa
PERTAMINA HULU MAHAKAM (PHM)
Presentation Outlines

1. Introduction
2. Fracture Gradient Estimation
3. Connection Gas Method
4. Gas While Drilling
5. Pressure Test Optimization
6. Cable Creep Measurement
7. Conclusions
Introduction to Mahakam Delta

GIANT GAS FIELDS

40 YEARS PRODUCTION

>2,000 WELLS DRILLED 100/Year

MORE THAN 1,700 km PIPELINE

103 GTS & CLUSTER

26 PLATFORM

6 PROCESSING AREA

Mahakam Deltaic System

1. **Side Bar - Channel**
2. **Distributary Mouth Bar**

Lower Kutei Basin

Mid Miocene - Pliocene

Multilayer Reservoir

Mahakam Synthesis, 2003
Geology Operation Challenges in The Mahakam Delta

- Marginal Reserves
- High inclination & 3D profile
- Thin Multilayer Reservoir
- Coal Layers (Gas & Pack off)
- Depleted Pressure – Low FG
- Overpressure and Narrow Drilling Window
Pore Pressure and Fracture Gradient Challenges and Solution

Challenges
- Isolated and Depleted Reservoir Pressure
- Reservoir Modeling and Correlation
- Fracture Pressure in Depleted Reservoir

Solution
- Update Data with Post Mortem Study
- Provide Pressure and Fracture Gradient Profile every well that to be drilled (+/- 100 wells/year)
- Realtime Pore Pressure – Fracture Gradient Monitoring
- Acquire and Update Reservoir Pressure
Fracture Gradient Estimation Method in Depleted Reservoir

\[P_{frac} = \left(P_{litho} - P_{pore} \right) \frac{\nu}{1 - \nu} + P_{pore} \]

*Fracture pressure calculated by Eaton formula

\[K = \frac{\sigma_h}{\sigma_v} = \frac{P_{frac} - P_{pore}}{P_{litho} - P_{pore}} \]
\[\nu = \frac{K}{1+K} \]

\(K \): ratio horizontal over vertical effective stress

Fracture Pressure

Overburden Pressure

Pore Pressure

Poisson’s Ratio

Mud Losses

Mini Frac

Step Rate Test (SRT)

Fadlan et al., 2016
Pore Pressure Monitoring: Connection Gas Source Calculation

Objectives

- Identified Peak Gas origin from pump stroke reading
- Differentiate Peak Gas coming from Coal/Carbonate or Overpressure

Accessing Strategy

Gas Coming from:

- Coal / Carbonate → Circulate gas
- Overpressure → Increase Mud Weight
Fluid Interpretation: Gas While Drilling

Methodology

1. **Depth Match**
 - Gas Data – FA – PTR – Perforation

2. **Reservoir Correlation**
 - Marker to Marker

3. **Gas Data Quality Control**

4. **Gas Ratio Crossplot**
 - Define Model

5. **Cut Off**
 - Gas and Water Zones

Identified Fluid From Gas While Drilling data

- **Methodology**
 - Depth Match
 - Gas Data – FA – PTR – Perforation
 - Reservoir Correlation
 - Marker to Marker
 - Gas Data Quality Control
 - Gas Ratio Crossplot
 - Define Model
 - Cut Off
 - Gas and Water Zones
Pressure Test Optimization: Selecting Point

Background and Objective

- 35% Tight Result from 2298 Points (2015 – 2018)
- Increase Success Ratio of Pressure Test Attempts and Reduce Logging Time

Result

Sandstone Reservoir with:

- **< 8%** Effective Porosity
- **> 5000 psi** Differential Pressure

Are Not Recommend To be Tested
Cable Creep Measurement

Upward movement of tools after the wireline winch stopped due to cable elasticity

- Optimize pressure acquisition in thin reservoir
- Less rig time used with less attempt
- Reduce possibility of tool stuck
- Reduce packer seal failure

971 REQUEST POINT

2017-2018 Rig Time Saving

SUCCESS RATIO BY ATTEMPS
- 43% before creep
- 70% after creep

9 MINUTES/ATTEMPT
783 SAVE SETS

5 Days Saving
Conclusion

Strategy to facing subsurface uncertainties in Mahakam:

Well preparation and mitigation while drilling of depleted reservoirs:
- Improve Fracture Gradient Analysis for drilling optimization, opening drilling window and drill well safely
- An easy and at no cost Connection Gas Stroke Calculation for gas source analysis from coal or overpressure

Logging operation efficiency and success ratio:
- Optimize Gas While Drilling data (no extra cost) to support fluid analysis
- Increase success test in thin reservoir, reduce time & tools exposure with Cable Creep analysis and Pressure Test selection method