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Abstract

Ongoing economical polymer and chemical injection projects have shown that some geological parameters such as sand connectivity or
mineralogical composition may be crucial uncertainties upon project success. Since most of these parameters are hardly captured by seismic
data, modeling in the inter-well area is usually based on statistical methods and several 3D scenarios are used to tackle uncertainties. The
Rayoso Formation (Neuquén Basin, Argentina) is currently under secondary and tertiary recovery. Reservoirs in this unit are comprised by
sandstone bodies associated to an ephemeral fluvial fan accumulation system. Given the remarkably complex sand/mud distribution inherent of
these systems, robust conceptual models and system characterization are critical to provide more deterministic 3D models. Moreover, reservoir
architecture of widely correlatable sand reservoir bodies becomes a key uncertainty when modeling fluid connectivity. Thus, the aim of this
study is to analyze and characterize the sedimentary architecture of the Rayoso Fm. sandbodies and discuss the impacts in the building of 3D
static models. Four stratigraphic sequences have been described showing thickening and coarsening upward trends. Each sequence shows
transition from relatively stable fluvial channels within low net-to-gross intervals into extensive fluvial depositional bodies or fans. Climatic
variations affecting sediment discharge are interpreted to be the main control over such sequences. Apparently continuous reservoirs at the top
of the sequences, ~8 meters thick with excellent reservoir properties, are the targets of secondary and tertiary recovery. Production data and
dynamic modelling at pilot-scale showed good fluid connectivity at the top of the described sequences. However, field-scale and multifield-
scale production data indicated evenly spaced east-west discontinuities oriented perpendicular to the depositional dip, suggesting a stratigraphic
disconnection of a subseismic scale. These discontinuities are interpreted as lobes progradations and lateral stackings expected in these
systems. Modern outcrop and numerical analogues were used as reference to constrain modeling scenarios with robust geological concepts.
This concept-based relatively deterministic approach was critical to represent fluids distribution and flow paths.
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Geological parameters critical for chemical/polymer injection projects?

Reservoir connectivity?

Reservoir heterogeneities?
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Parameters hardly captured by seismic data

Need to understand the reservoir architecture

3D model scenarios to tackle uncertainties
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- "” Schematic cross-section oriented N-S (depositional dip direction) total lengh: 82km

* Regionally traceable gypsum bed marks the upper boundary of the “Evaporitic Rayoso” (subsurface) / “Las Salinas
member” (outcrop) Interval.

e This gypsum bed is used as a regional datum surface.
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e “Clastic Rayoso” interval characterized by the dominance of clastics and absence of evaporites.

e According to vertical and lateral sandstone distribution in the study area, a fluvial clastic system is interpreted to
prograde from south to north (ACC<SUP).
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* Change in stacking pattern. Inferred retrogradation of the system (ACC>SUP).

e This interval is called “Evaporitic Rayoso I1”
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Schematic cross-section oriented N-S (depositional dip direction) total lengh: 82km

e Stacking patterns suggest cyclicity at different scales.

* Major interest in this Project is to establish the characterize and clarify the origin of cyclicity within the high N/G

Interval of the Clastic Rayoso (main productive Interval).
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Schematic cross-section oriented N-S (depositional dip total lengh: 82km

e Stacking patterns suggest cyclicity at different scales.

* Major interest in this Project is to establish the characterize and clarify the origin of cyclicity within the high N/G
Interval of the Clastic Rayoso (main productive Interval).
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» How to characterize the internal architecture of such a system?

From Barros et al. 2016
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_I:~_£-=.. |5m ) How is the rock heterogeneity distributed within the reservoir?
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Reservoir geometry analysis

7| Kriging model of the Derivative of GRsth
Flattened at horizon RC3a

~ RC3a
300m
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) Shingled geometries observed that could control the reservoir connectivity

) How is the rock heterogeneity distributed within the reservoir?
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Scales in fluvial fan systems & analogies

Fan 1 (inactive)

Modified from Lane et al. 2016
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Stratigraphic correlation of the Rayoso Fm.

) Sedimentation pulses related to ephemeral fluvial discharge. Downdip

and lateral facies variations
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) How to reflect these vertical and lateral variations in the 3D models?
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* Facies of 4 wells in a same sedimentary cycle

may be controlled by element geometry
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3 Concept B Hipothetical scenario

e Connectivity between wells without Geological bodies: all Facies A will always
connect between wells 1,2,3 and 4
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* Facies of 4 wells in a same sedimentary cycle
Facies quality A>B
» may be controlled by element geometry
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I Hipothetical scenario

I Concept
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Colombera et al. 2012 (FAKTS) and Ava Clastics PDS.

Modelling with depositional elements
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Modelling with depositional elements
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Based on detailed stratigraphic analyisis and well data we
characterized the internal architecture of fluvial fan sequence

This reservoir architecture will control the

We analysed the lateral and vertical distribution of the
geological elements in such a fan system based on analogue
data

Following these concepts, 3D models of these elements at
depositional scale help to represent the
critical para EOR projects

Ongoing work: model elements using MPS, build
porosity/permemeabilty relationships for each elements and
dynamic model to test the effect of the heterogeneities on fluid
distribution

Summary-conclusions
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