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Abstract

Integration of geologic and geophysical data is essential to optimize seismic images in complex-structure areas. The seismic data in these areas
have low data density, low signal quality, and complex geology. The conditions make it difficult to constrain the velocities needed to optimize
the seismic imaging, so we rely on geological interpretation to guide and constrain the subsurface velocities for time and depth imaging.
Seismic images from the Andes of Colombia and Peru show how geologic constraints improve the seismic imaging.

These data examples also show the trade-offs between accuracy and stability when we apply the different imaging algorithms: prestack time
migration, Kirchhoff depth migration, and reverse-time migration (RTM). More accurate algorithms require a better understanding of the
subsurface velocity structure, and are therefore more delicate and sensitive to velocity errors. Unfortunately, complex geology requires the
higher fidelity algorithms to accurately image subsurface structures, and complex geology is where we have the most difficulty constraining the
subsurface velocity model.

These thrust-belt data examples show how we apply the different algorithms to different geologic settings, and they illustrate the importance of
geologic constraints to optimize the seismic image, regardless of the algorithm.
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Abstract 3D model buildi ng for 2D data Figure 5: Velocity model for PSDM and RTM created from the geologic structural model and seismic diagnostics Figure 6: Legacy PSTM seismic image
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