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Abstract 

 

Integration of geologic and geophysical data is essential to optimize seismic images in complex-structure areas. The seismic data in these areas 

have low data density, low signal quality, and complex geology. The conditions make it difficult to constrain the velocities needed to optimize 

the seismic imaging, so we rely on geological interpretation to guide and constrain the subsurface velocities for time and depth imaging. 

Seismic images from the Andes of Colombia and Peru show how geologic constraints improve the seismic imaging. 

 

These data examples also show the trade-offs between accuracy and stability when we apply the different imaging algorithms: prestack time 

migration, Kirchhoff depth migration, and reverse-time migration (RTM). More accurate algorithms require a better understanding of the 

subsurface velocity structure, and are therefore more delicate and sensitive to velocity errors. Unfortunately, complex geology requires the 

higher fidelity algorithms to accurately image subsurface structures, and complex geology is where we have the most difficulty constraining the 

subsurface velocity model. 

 

These thrust-belt data examples show how we apply the different algorithms to different geologic settings, and they illustrate the importance of 

geologic constraints to optimize the seismic image, regardless of the algorithm. 
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Imaging algorithms 
The seismic-imaging toolkit has a range of algorithms with strengths and 
weaknesses. This imaging project from the Llanos foothills of Colombia 
illustrates these trade-offs between imaging algorithms.

• Prestack time migration (PSTM)
� Kirchhoff migration using RMS average velocity from surface
� Averages through near-surface effects
� Requires minimal a priori knowledge
� Velocities are unconstrained and often do not correlate with geology
� Robust method gives highest probability of creating image

With the unconstrained nature of 2D land 
seismic data, there is a certain amount of 
ambiguity or non-uniqueness in the 
velocity-model-building process. The 
velocity model was constrained by two 
wells at either end of the exploration block. 
Constraining the velocity model in 3D 
further reduced ambiguity, and the 
resulting prospect maps were more 
consistent across the block. The 
interpretation team was more confident in 
the relative highs and lows of the structure 
from 2D line to 2D line, knowing the 
velocity variability was minimized.

Results 
How much is pull-up, how much is 
structure?

The images to the right show the time 
(Figure 3) and depth (Figure 4) images 
from a line on the block. The dashed line 
indicates the regional trend of a deep 
reflector on the low side of the monocline. 
On the time section (Figure 3), the lateral 
velocity variation across the outcrop of the 
monocline resulted in a velocity pull-up on 
the deep reflector. The structural trend is 
amplified by the velocity pull-up.

Correcting for the lateral velocity variation 
across the monocline in the depth image 
(Figure 4) resulted in minimizing the effect 
of the pull-up. The resulting depth 
migration imaged more detail beneath the 
monocline and above the dashed line.
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Figure 5: Velocity model for PSDM and RTM created from the geologic structural model and seismic diagnostics
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Figure 6: Legacy PSTM seismic image
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Figure 7: Reprocessed PSTM seismic image with focus on subthrust structures

Figure 8: PSDM image using the velocity model in Figure 5. Resolves additional detail in the deep section 
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Figure 9: RTM image using the velocity model in Figure 5. Further improvements in the deep section, trade-offs on left side

Abstract 

• Seismic data in structured land areas have severe limitations

• Geologic interpretation and human collaboration can overcome these 
limitations

• Increased accuracy of an imaging algorithm also means increased 
sensitivity: PSTM → PSDM → RTM 

• Examples from Colombia and Peru show how we resolve these issues 
through geoscience collaboration

Introduction 
Difficulties with land seismic data in structured areas:

• Low data density 
• Low signal-to-noise ratios 
• High geologic complexity 

The subsurface velocity model is highly underconstrained by the seismic 
data, so automated methods for deriving the subsurface velocities required 
for seismic imaging are highly unstable. We use a workflow similar to 
Murphy and Gray's (1999) manual-tomography method to leverage the 
experience of the processor, interpreter, and geologist to overcome these 
limitations.

Geologic constraints are required to optimize the seismic image.

Once we have a geologically constrained velocity model, we have a variety of 
seismic-imaging algorithms, each with advantages and disadvantages. 
Generally, more advanced imaging technology requires more accuracy in the 
velocity model to optimize the seismic image. Simplifying assumptions and 
averaging the various velocity offers robustness in exchange for accuracy.

Velocities for PSTM 
Since we do not know the subsurface velocities, we migrate the data across all 
possible subsurface velocities. We can then interactively scroll through the 
resulting seismic images in search of reflector continuity. Understanding the 
geology is key to identifying geologic shapes from seismic noise.

Model-building method for PSDM 
Structural cross-section, regional lithology, and interpretation of the major 
velocity boundaries on the PSTM image are key inputs for the initial depth-
migration velocity model.

Following the workflow in 
Figure 1, we migrate the 
gathers using the interpreted 
velocity model, and ask the 
tough questions: 

• Have we optimized the 
seismic imaging?

• How does the image 
compare to the time 
migration?

• Do the depths of seismic 
reflectors tie the depths a 
the well?

Early in the process, the 
answers are mostly “no”. We 
iterate until we can say “yes” 
to most or all of these 
questions. Resulting model 
examples are shown in 
Figures 2 & 5.

3D model building for 2D data 
In searching for additional model constraints, we built 3D models for 2D 
seismic-imaging projects to have more consistent velocities across a block 
and further constrain the model. Figure 2 shows an interactive display of 3D 
model-building software used to build the mononclinal velocity model for a 
2D seismic-imaging project in the Ucayali Basin of Peru (Vestrum et al, 2015).

Figure 1: Workflow for PSDM velocity model 
building. Inputs are the structural interpretation 
and the processed seismic shot gathers. Iteration 
around the re-interpretation circle results in 
optimized image

Figure 2: Velocity model using a 3D velocity model to migrate 2D lines

Figure 3: PSTM seismic image showing velocity pull-up below monocline
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Figure 4: PSDM image. Minimized pull-up shows remaining structure above dashed line
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• Prestack depth migration (PSDM)
� Kirchhoff migration uses raytracing through geologic model
� Corrects for near-surface effects
� Requires a priori knowledge for structural velocity model
� Velocities that correlate with geology
� Delicate method useful for scenario testing and risk assessment

• Reverse time migration (RTM)
� Depth migration uses wave propagation through geologic model
� Corrects for more wave-propagation effects
� More delicate than Kirchhoff, but performs better below large velocity 

inversions like sub-thrust imaging

The higher-fidelity algorithms that correct for more wave-propagation effects 
require higher accuracy in the subsurface velocity model.

Results 
The second dataset, shown in Figures 5-9, is a 2D seismic line from the 
Colombian Andes. 

Reprocessed PSTM (Figure 7) shows improvements in deeper 
structures that result from improved near-surface corrections, more 
detailed velocity analysis, and coherency enhancement.

PSDM image (Figure 9) resolves the imaging of the syncline in the 
hangingwall of the major thrust (CDP 1500-1900). There is also more 
structural detail in the footwall of the thrust, below the syncline.

RTM image (Figure 9) shows further imaging improvement in the 
imaging below the fault and below the syncline. In the area to the left 
end of the section, in CDP ranges 100-400, however, the velocity-
model ambiguity resulted in a degraded image on the RTM as 
compared to the Kirchhoff PSDM in Figure 8.

Conclusions 
No matter which imaging algorithm is used, the more geophysical, 
geological, and regional constraints we can apply to the subsurface 
velocity model, the more we may optimize the seismic imaging.
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