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Abstract

Combining gas chromatography with tandem mass spectrometry to assess unresolved structural and stereoisomeric mixtures of steranes in crude oils
began 35 years ago. C27-C29 20S/20R and diasterane/regular sterane ratios were often used to determine oil and source rock maturity and GC- MSMS
techniques allowed for more precise measurements of these thermally sensitive biomarker ratios. Today, GC combined with triple quadrupole mass
spectrometers not only allows for the better resolution of steranes and other biomarkers (e.g., carotenoids) found in oils, source rock bitumen and kerogen
but also measures a wide variety of other, more volatile thermally dependent compounds such as alkyl naphthalenes/phenanthrenes and diamondoids.
Simple ‘Dilute & Shoot’ injections of whole crude oils preclude evaporative loss, while the specificity of the tandem spectrometers allows for the
discrimination of saturate and aromatic hydrocarbons, eliminating the need for liquid chromatographic separations. A combination of these thermally
sensitive biomarker ratios can be subjected to principal component analysis, and the resulting first or primary factor often carries over 75% of the total
variation in the dataset. The principal component calculated for each oil in each family can be converted to a ‘vitrinite reflectance equivalent’ (VRE)
value in order to place each oil within the confines of the oil generation window (~0.6-1.2% Ro) and likely records the maturity of the corresponding
source rock at the time the oil was expelled (primary migration). It is important to evaluate maturity in oils that are from the same source facies since
some of these maturity ratios may also have a significant genetic or source component. At advanced oil maturity levels that yield volatile oils or
condensates (~1.0-1.3% Ro), terpane and sterane biomarkers are thermally degraded and are often insufficient in abundance to be useful in predicting
maturity levels. Also, these biomarker-derived maturity estimations reflect the maturity of the heavier-ends (C20+) of the oil; lighter components of the
same oil may have been derived from more mature, biomarker-deficient fluids expelled from the same source rock at a later time, due to increasing
geothermal heating during subsidence. Since many of the fluids produced from unconventional lateral completions are light oils or condensates with
minimal biomarker concentrations, or may have high maturity lighter-end components in addition to typical biomarker distributions, we have developed
an oil maturity calculation based on known differences in the thermal stability of alkyl-substituted benzenes, naphthalenes, and phenanthrenes. To derive
VREQ values (vitrinite reflectance equivalent based on the triple quadrupole), a series of thirteen alkyl- substituted naphthalene and phenanthrene ratios
are constructed such that they increase with increasing maturity, with the more thermally stable isomer in the numerator. The percentages of all thirteen
are simply added together with the higher total values corresponding to higher maturity levels. To calibrate the scale, the upper end of fluid maturity is
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fixed at 1.35% Ro and given to a number of clear condensates analyzed with the highest alkyl aromatic summations measured. Lower values are equated
to oil standards of known or suspected maturities, as well as source rock extracts. Source rocks, with measured Ro values and Tmax determinations from
pyrolysis, are crushed but not powdered, and the DCM extract (never taken to dryness to minimize evaporation) is injected on the GC-triple quadrupole
after deuterated internal standards are added. Crude oils often have multiple maturity signals with the VRE from the heavier biomarkers recording the
early, less mature products and the VREQ values the later, lighter, and more mature signal. This presentation will illustrate the 35+ year evolution of both
Instrumental and Interpretive approaches to determine the thermal maturity of generated hydrocarbon fluids and their relationships to parent organic
matter.
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relationship to parent organic matter. Combining gas chromatography with tandem mass spectrometry to assess unresolved structural and stereoisomeric mixtures of
steranes in crude oils began 35 years ago (Warburton and Zumberge, 1983). C27-C29 20S/20R and diasterane/regular sterane ratios were often used to determine oil
and source rock maturity (e.g., Mackenzie et al., 1980; Zumberge 1987), and GC-MSMS techniques allowed for more precise measurements of these thermally-sensitive
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Today, GC combined with triple quadrupole mass spectrometers not only allows for the better resolution of steranes and other biomarkers (e.g., carotenoids; French et

al., 2015) found in oils, source rock bitumen and kerogen (e.g., Zumberge et al., 2018), but also measures a wide variety of other, more volatile thermally-dependent

compounds such as alkyl naphthalenes/phenanthrenes and diamondoids (e.g. Zumberge et al., 2016a; Zumberge et al., 2017a; Zumberge et al., 2017b). Simple 'Dilute
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75% of the total variation in the dataset. The principal component calculated for each oil in each family can be converted to a ‘vitrinite reflectance equivalent’ (VRE)
value in order to place each oil within the confines of the oil generation window (~0.6-1.2% Ro) and likely records the maturity of the corresponding source rock at the Geoff A. Warburton )
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At advanced oil maturity levels that yield volatile oils or condensates (~1.0-1.3% Ro), terpane and sterane biomarkers are thermally degraded and are often insufficient / ,
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In order to derive VREQ values (vitrinite reflectance equivalent based on the triple quadrupole), a series of thirteen alkyl-substituted naphthalene and phenanthrene Elor ClSource Quad1 Quad 3 Detector
ratios are constructed such that they increase with increasing maturity, with the more thermally stable isomer in the numerator. The percentages of all thirteen are
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Crude oils often have multiple maturity signals with the VRE from the heavier biomarkers recording the early, less mature products and the VREQ values the later,
lighter, and more mature signal. This can also be seen in an oil maturity series from Eagle Ford laterals using compound specific isotope ratios (Barrie et al, 2016).
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