PS Depositional Facies, Depositional Processes, and Reservoir Quality of the Miocene Sandstones of the Midway-Sunset Oil Field, San Joaquin Basin, CA, USA*

Olawale E. Olabisi¹

Search and Discovery Article #20481 (2020)**
Posted June 8, 2020

*Adapted from poster presentation given at 2020 AAPG Pacific Section Convention, 2020 Vision: Producing the Future, Mandalay Beach, Oxnard, CA, April 4-8, 2020 (Cancelled)

**Datapages © 2020 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/20481Olabisi2020

¹Sentinel Peak Resources LLC, Bakersfield, CA (oolabisi@sentinelpeakresources.com)

Abstract

The 125-year old Midway-Sunset Oil Field has produced over 2.5 billion barrels of oil with an estimated 500 million barrels remaining in place as of 2009. A re-assessment of a prolific Miocene reservoir in the field was initiated in 2017. Over 433 feet of whole core and 168 side wall cores were taken from a recently drilled well, in a well-developed area of the field, targeting the Miocene X and Y sandstones. These cores were examined to determine depositional facies, depositional processes, and reservoir quality. The X reservoir consists of three depositional facies: (1) Disorganized, conglomeratic, coarse-grained sands, (2) Fine to very coarse-grained sandstones with no clasts, and (3) Sands with few floating or non-floating clasts. The Y reservoir consists of four depositional facies: (1) Massive, structureless sandstones (no clasts present), (2) Very thin beds between 0.1 to 5 inches (laminated sand and diatomite), (3) Conglomeratic and coarse sands, (4) Silty/Diatomaceous and bioturbated mudstones. Interpreted depositional processes are Sandy Debris (conglomerates, sands with floating clasts), Turbidites (massive, fine grained, normal grading sands), Slump (diatomites with associated sand injections), Bottom-Current-Reworked (rhythmic occurrence of thin bedded sands with sharp contacts), pelagic and hemipelagic (silty/diatomaceous, bioturbated mudstones). The sandy debrites and turbidites have the best reservoir qualities; oil saturation is over 60%, effective porosity is as high as 43%, and permeability over 10D. This is possibly caused by grain-size distribution and sorting directly influenced by depositional processes. Clasts present in sand matrix are majorly granitic, diatomitic, and carbonaceous; they act as baffles and directly influence pore volume. Some of the clasts are fractured and have been healed by carbonate cement. In other cases, carbonate cement has been dissolved and hydrocarbon has filled fractures. Visual estimation of clast percentages shows that clast percentage in the X reservoir forms over 70% of the total reservoir and less than 20% in the Y sands. In general, these sandstones are unconsolidated and are held together by heavy oil except in cemented zones. The X and Y sandstones are interpreted to be deposited in a deep-water, submarine fan complex. A thorough understanding of depositional environment is important when managing a reservoir because the internal architecture (barriers, baffles, flow units), vertical, and lateral continuity of sand packages determine the efficiency of steam cycling and/or steam flooding (EOR techniques) in heavy oil reservoirs. As a rule of thumb, the depositional environment should be considered as very important for successful subsurface heat management in heavy oil reservoirs.
Selected References

Depositional Facies, Depositional Processes, and Reservoir Quality of the Miocene Sandstones of the Midway-Sunset Oil Field, San Joaquin Basin, CA, USA

Olawale E. Olabisi
Sentinel Peak Resources LLC, Bakersfield, CA
olabisi@sentinelpeakresources.com

INTRODUCTION

The 125-year-old Midway-Sunset Oil Field (MWSS) has produced over 2.5 billion barrels of oil with an estimated 500 million barrels remaining in place as of 2009. A re-assessment of a prolific Miocene reservoir in the field was initiated in 2007. Over 625’ of whole core and 168 side wall cores were taken from a recently drilled well in a well-developed area of the field, targeting the Miocene X and Y sandstones. The cores were taken to determine the depositional facies, depositional processes, and reservoir quality of these sandstones. Ultimately, this allowed us to construct a depositional environment model for the Miocene X and Y sandstones. A thorough understanding of the environment of deposition is very important for a successful subsurface heat management program because the internal architecture (barriers, baffles, flow units, vertical, and lateral continuity of sand packages determine the efficiency of steam cycling and/or steam flooding (GOR techniques) in heavy oil reservoirs.

LOCATION

Figure 1. Map showing the Midway-Sunset Oil Field

CORED INTERVAL

Figure 2. Type Log showing cored interval (red polygon) in the X and Y reservoirs. The neutron-density cross over is shaded yellow and an indication of depletion caused by steam injection. Maximum reservoir temperature exceeds 200 degrees.

IMPORTANCE OF DETAILED CORE DESCRIPTION

- All clasts are heterogeneous. Capture every detail and (illusion degree of heterogeneity.
- Tells if one or multiple depositional environment.
- More accurate observational depositional facies; Internal features of the rocks as they respond to steam seaming

Figure 3. Depositional Facies, Depositional Processes, and Reservoir Quality of the Miocene Sandstones of the Midway-Sunset Oil Field

QUANTIFICATION OF DEPOSITIONAL FACIES AND RESERVOIR QUALITY

IN THE RECOVERED CORE (X AND Y SAND)

<table>
<thead>
<tr>
<th>Facies</th>
<th>Depositional Facies</th>
<th>Depositional Process</th>
<th>Porosity Range (%)</th>
<th>So Range (%)</th>
<th>Ka Range (md)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sands with floating or non floating clasts; conglomerates if clasts >30%</td>
<td>Turbidity currents</td>
<td>0 - 42</td>
<td>0 - 46</td>
<td>Up to 8000</td>
</tr>
<tr>
<td>2</td>
<td>Massive (structureless), fine-graded sands, normal grading (no clasts)</td>
<td>Turbities</td>
<td>20 - 43</td>
<td>0 - 67</td>
<td>Up to 1723</td>
</tr>
<tr>
<td>3</td>
<td>Diatomites with associated sand injections</td>
<td>Slump</td>
<td>46 - 60</td>
<td>0 - 30</td>
<td>100 - 296</td>
</tr>
<tr>
<td>4</td>
<td>Rhythmic occurrence of thin bedded sands & diatomites with sharp contacts</td>
<td>Bottom-CURRENT: Reworked</td>
<td>26 - 60</td>
<td>0 - 76</td>
<td>0 - 185</td>
</tr>
<tr>
<td>5</td>
<td>Silty/Diatomaceous, bioturbated mudstones; planar, angular and cross laminated</td>
<td>Pelagic & Hemipelagic</td>
<td>47 - 65</td>
<td>4 - 28</td>
<td>0 - 112</td>
</tr>
</tbody>
</table>

CONCLUSION

- Clasts are majorly granitic, diatomite, and carbonaceous.
- Diatomite clast mode resistivity
- X sand has more carbonaceous clasts
- Fracture in clasts – Secondary Porosity and Hydrocarbon Migration
- Fracture is healed by carbonate cement thereby reducing porosity.
- In some cases, carbonate cement has dissolved and hydrocarbon has filled fractures.
- Carbonate cements and disorganized conglomerates have reduced reservoir quality in the X sands.
- X & Y sands are unconsolidated & held together by heavy oil except in carbonate cemented zones.

Figure 4. Schematic diagram showing deep-marine sedimentary depositional environment of the X/Y sands of the Miocene Series, Monterey Formation, MWSS Oil Field

REFERENCES

Acknowledgement

Special thanks to the management of Sentinel Peak Resources for allowing me to publish this work.

Figure 5. Typical subdivisions of the X sand of the Miocene Series, Monterey Formation, MWSS Oil Field

Figure 6. Schematic diagram showing deep-marine sedimentary depositional environment of the X/Y sands of the Miocene Series, Monterey Formation, MWSS Oil Field.