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Abstract

The energy landscape is evolving from petroleum dominance to a widening array of renewable, low-carbon components. Along with wind,
hydro, and geothermal, solar has reached an economic threshold that fosters market growth. Storage requirements for electric vehicles and
renewable baseload are spurring increased demand for lithium, graphite, cobalt, vanadium, and nickel. Geologists who explore for and extract
these metals will use skills honed in the oil and gas industry as well as familiar datasets, such as borehole records, surface geologic maps, rock
mineralogy, and size statistics. Predictive models of ore accumulation rely on mass transport calculations at assumed heat, pressure, brine
composition and mineral equilibria, and are comparable to those used to understand oil generation, migration, and trapping. Three dimensional
geologic models to explore for and assess reserves of metals will benefit from enhanced geophysical techniques, including 3D seismic, as well
as the application of play fairway analysis to better predict exploration corridors. Defining the heat resource, drilling, fracking, and circulating
brines are also key components to the successful exploitation of geothermal energy. Structural geology and sedimentology studies remain
crucial to proper siting, monitoring, and remediation of hydro-electric projects. Geoscientists can also maximize energy efficiency for
development of renewable components via the use of low carbon energy resources, and we can apply our environmental experience to
minimize the footprint of mines and manufacturing sites. Solar and wind design and construction are fertile ground for the application of
geography and GIS skills. In parallel to development of new forms of renewable energy, a shift from heavy to light hydrocarbons for
transportation and electricity generation requires traditional petroleum technology to define and extract stranded global gas resources. And, of
course, we can always work to green the oilfield by introducing solar pumps and vapor recovery units. As geoscientists and engineers, we have
opportunities to transfer our expertise in exploration, development, extraction, and remediation to processes associated with cleaner energy
production. We can utilize our strengths in creativity, risk assessment, and environmental stewardship to become leaders in sustainable energy
development.
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Global Energy Potential

Data from Perez and Perez, 2009, graphic by Sun Team Solar
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Global Energy Transformation and the Career Opportunity Set
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Electromagnetic monitoring of
hydraulic fracturing: relationship
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Major lithium deposits by type
® Brine ® Hard rock

Cobalt Means Congo
Last year around 67 percent of the global cobalt supply was mined in the Congo
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As demand for electric vehicles rises, lithium — a key component of batteries — is fast emerging as a valuable commodity
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Global investment in energy supply, 2000-2016
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Oil and gas business model
High risk
High rate of return
High capital investment
Long investment cycle
Infrastructure dependent
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Solar business model
Low risk
Utility style returns
Low capital investment

Rapid deployment cycle 1Shack
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...the world is ove:ru cheap and
plentiful clean energy... how do we adapt?

. - Dan Frey, THG Energy Solutions, 2017 rockwhispererlic.com
W - Imagefrom Google Earth edith newton wilson on LinkedIn



References and Resources

Brown and others, 2018, Response to ‘Burden of proof: A comprehensive review of the feasibility of
100% renewable-electricity systems’, Renewable and Sustainable Energy Reviews, Volume 92, pp.
834-847

EIA International Energy Outlook 2016, DOE/EIA-0484 (2016)

IEA World Energy Investment 2017: https://www.iea.org/publications/wei2017/

Perez and Perez, 2009, A Fundamental Look at Energy Reserves for the Planet; IEA SHC Solar Update
Inman, 2013, How to Measure the True Cost of Fossil Fuels, Scientific American, April, 2013

Fourth National Climate Assessment Volumes | and Il; https://www.globalchange.gov/

NASA, 2015, Earth’s Rising Seas: https://svs.gsfc.nasa.gov/11927

University of Texas at Austin Energy Institute: https://news.utexas.edu/2018/10/25/energy-
institute-full-cost-of-electricity-study/

New Energy Outlook 2018, Bloomberg Energy Finance: https://about.bnef.com/new-energy-

outlook/
USGS 2002 World Petroleum Assessment

USGS PP 1802: Critical Mineral Resources of the United States

Thiel, 2017, Electromagnetic monitoring of hydraulic fracturing: relationship to permeability,
seismicity, and stress, Surveys in Geophysics, September 2017



https://www.sciencedirect.com/science/journal/13640321
https://www.sciencedirect.com/science/journal/13640321
https://www.sciencedirect.com/science/journal/13640321/92/supp/C
https://www.iea.org/publications/wei2017/
https://www.iea.org/publications/wei2017/
https://www.globalchange.gov/
https://svs.gsfc.nasa.gov/11927
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://news.utexas.edu/2018/10/25/energy-institute-full-cost-of-electricity-study/
https://about.bnef.com/new-energy-outlook/
https://about.bnef.com/new-energy-outlook/
https://about.bnef.com/new-energy-outlook/
https://about.bnef.com/new-energy-outlook/
https://about.bnef.com/new-energy-outlook/

