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Abstract

Earthquake and tsunami records on centennial and millennial temporal scales are necessary to understanding subduction zone hazards and the
occurrences of large, but infrequent events. Subduction zone paleoseismology combines the methods of coastal stratigraphy, sedimentology,
micropaleontology, geophysical and sediment transport modeling, and sea-level research to produce some of the most detailed long-term
histories of coseismic vertical deformation and tsunami inundation along subduction zone coastlines. Microfossil-based (e.g., diatoms,
foraminifera) techniques that employ the relation between microfossils and salinity, tidal elevation, and life form to quantify coseismic land-
level change across sharp stratigraphic contacts and identify anomalous sand beds deposited by tsunamis are particularly valuable to subduction
zone paleoseismic studies. Microfossil-based techniques have been successfully employed in the reconstruction of earthquake and tsunami
histories in Chile, the Indian Ocean, Japan, New Zealand, the North Sea, the Pacific Northwest of North America, and the South Pacific. In
Alaska and Chile, microfossils have documented both uplift and subsidence at proposed subduction zone segment boundaries, expanding our
knowledge of the variability of slip in megathrust ruptures. In tsunami studies in Alaska, Chile, and Japan allochthonous marine and brackish
microfossils within anomalous sand deposits signaled previously undocumented high-energy marine incursions into coastal lowlands. At the
Cascadia subduction zone, a marsh monitoring experiment emphasized the importance of studying the modern diatom response to changing
environmental conditions to refine estimates of past coseismic deformation. Finally, paleoseismic studies have better informed our modeling of
teleseismic tsunamis that pose a flooding hazard to near- and far-field coastlines. Forward modeling of teleseismic tsunamis originating along
the Aleutian megathrust combined with probabilistic sea-level rise projections for southern California illustrate the increased flooding threat to
highly populated areas from far-field tsunamis as sea level rise accelerates over the next 100 years, emphasizing the need for interdisciplinary
approaches to future coastal hazards assessments.
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Presenter’s notes: This presentation will give an overview of the application of diatoms to subduction zone earthquake and tsunami studies. Diatoms can be applied to characterize
modern earthquakes and tsunamis, and are a big component of paleoseismic studies. As we know, paleoseismic studies are very important to assessing subduction zone hazards because
they allow us to extend earthquake and tsunami records beyond the historical period. I’ll use case studies from Chile, Alaska, and Cascadia to highlight some of the successes and
challenges we’ve faced applying diatoms to earthquake and tsunami studies.



Significance of work

Historical and instrumental records are temporally restricted

Short datasets may miss largest earthquakes
Japan 2011 (M,, 9.0) earthquake larger than expected
Geologic datasets on millennial temporal scales are necessary

dit: Miyako city official

Presenter’s notes:

« Why is it important to extend earthquake and tsunami record?

« Temporally restricted historical and instrumental records limit our understanding of long-term subduction zone behavior

- Datasets on centennial and millennial temporal scales are necessary to capture the spatial variability of subduction zone ruptures
Only then can the largest, but infrequent events be captured (e.g. 2004 Sumatra)
Paleoseismic studies allow us to extend earthquake and tsunami records over multiple earthquake cycles
This allows us to address fundamental questions about rupture mode variability and segmentation of subduction zones



Significance of work

Historical and instrumental records are temporally restricted

Short datasets may miss largest earthquakes
Japan 2011 (M,, 92.0) earthquake larger than expected
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Earthquake deformation cycle

Inferseismic Coseismic
Overriding plate Dragged Bulges Sudden Uplift Subsidence
down up
Tsunami
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Sliding freely - ------------ Unstuck

Interseismic period = gradual deformation
Coseismic period = sudden deformation

Recorded in the coastal stratigraphy as a
series of relative sea-level (RSL) changes

Presenter’s notes: Coastal marshes, lagoons, estuaries that are sensitive to RSL changes are the best places to preserve earthquake and tsunami records.




Earthquake strafigraphy
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Tsunami stratigraphy
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Diatom-based studies

Photosynthetic, unicellular algae
that inhabit freshwater, brackish
and marine environments

Valuable in reconstructing
paleoenvironmental changes
due to their preferences to a
number of environmental factors

Salinity and substrate for EQ and
tsunami studies

Independent test of stratigraphic
interpretations

.

Aulacoseira crassipunctata —
Eunotia bilunaris _- !
Diadesmis contenta — !

Cosmioneis pusilla —
Pinnularia lagerstedltii
Denticula subtilis -

Caloneis bacillum —
Frustulia vulgaris
Luticola mutica
Tryblionella debilis -

Amphora salina —
Scolioneis tumida
Tryblionella granulata
Rhopalodia musculus -

Diploneis decipiens —
var. parallela
Planothidium delicatulum -

Achnanthes brevipes —
Cocconeis scutellum
Tabularia fasciculata —

Diploneis smithii —
Odontella aurita
Thalassiosira lacustris —

! Sampling

. station

4 fp—
)

Upland | High | Low

1rn|| marsh |marsh |Tidal flat |Subtidal

50m

Presenter’s notes:

Photosynthetic, unicellular algae that inhabit freshwater, brackish and marine environments.
Valuable in reconstructing paleoenvironmental changes due to their preferences to a number of environmental factors.
Preferences for salinity and life form are particularly valuable for earthquake and tsunami studies.



Diatom-based studies
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Diatom-based studies v IS
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Presenter’s notes: Diatom diagram is a cycle.

*Low-energy depositional environments with a strong environmental gradient are most likely to archive evidence of coseismic RSL changes.
*RSL changes are recorded by changes in lithology.

*Sharp (1-3 mm) contacts, laterally continuous, sometimes with tsunami deposits.

*Coastal stratigraphic records at Cascadia contain records > 6000 years.



Diatom-based studies

(3) Diatoms
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Alaska-Aleutian subduction zone

K70 mm/yr

Nine investigations from 2010-2016
® Umnak Island ® Unga Island ® Sitkinak Island

® Sedanka Island ® Simeonof Island ® Sitkalidak Island

Sanak Island ® Chirikof Island ® Kenal Fjords



Alaska-Aleutian subduction zone

Alaska

70 mm/yr

Active subduction zone

One “great” EQ (>M8) every
~13 years

One M7-8 EQ per year
Six M6-M7 EQ per year

Subduction zone highly
coupled between eastern
Kodiak Island and the
Shumagin Islands




Alaska-Aleutian subduction zone
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Alaska-Aleutian subduction zone
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Of particular concern: Semidi
segment

Alaska

Orientation directs tsunamis to
CA coast

Last EQ was in 1938 (Mw8.3)-
did noft reset

1964 was to the east on the
Kodiak segment




Alaska-Aleutian subduction zone
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Alaska-Aleutian subduction zone

4 N
Of particular concern: Semidi
segment

Orientation directs tsunamis to
CA coast

Last EQ was in 1938 (Mw8.3)-
did not reset

1964 was to the east on the
Kodiak segment

SAFFR scenario (USGS)
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Presenter’s notes:

Sitkinak Island, Alaska

and land-level change

environments

In the perfect location to catch tsunamis

Imagery shows low-energy depositional

Sitkinak Island

Area-of interest

Assemble team.

Determine an area that we can learn a lot from.
Get there somehow.

Choose a site for coring etc.

Core.

Describe core.

Correlate and Survey.

Sample key sections.

Send samples home and process.

Everyone does their part to put the story together.




Sitkinak Island: stratigraphic investigation
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Presenter’s notes: Position cores, cut banks, and pits over coast-parallel and coast-perpendicular transects (hundreds of meters)




Sitkinak Island: characterizing modern environments Sitkina%fﬂ“
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Sitkinak Island: sampling and analysis
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Sitkinak Island: results

a) Core lithologies and correlations, transects 1-3, Sitkinak Island, Alaska
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Figure S2

Sitkinak Island: results
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Sitkinak Island: results
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Freshwater and fresh-brackish Brackish-fresh and brackish Brackish-marine and marine
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Sitkinak Island: results
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Sitkinak Island: results
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This suggests that the segment boundary is not persistent




Multi-segment earthquake far-field tsunami impacts

Next steps:

Take results and incorporate
them into seismic hazard
maps

Use results to inform
earthquake and tsunami
modeling to learn more about
potential impacts of future
events

Consider compounding
hazards
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Compounding impacts of tsunamis and relative sea-level rise
RCP2.6 K14 and K17 . . . | '
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Presenter’s notes:

K14 projections based on estimates of thermal expansion/ocean dynamics, glacier melt, ice sheet of Bamber and Aspinall (2013), land water storage, non-climatic local sea-level
change, and gravitational, elastic, and rotational effects on local sea-level change from geophysical modeling.
K17 projections include an enhanced contribution from the Antarctic Ice Sheet (AIS).



Compounding impacts of tfsunamis and relative sea-level rise
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Destination: Sitkinak Island
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Gouals:

1. Reconstruct land-level
change and tsunami
inundation

2. Characterize slip during

past ruptures

3. Evaluate the
persistence of a
proposed segment
boundary

4. Update hazards maps if

needed

Western Aleutians

Mueller et al., 2015



Sitkinak Island: research summary
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