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Abstract 
 
The Leonardian Third Bone Spring Shale in the Delaware Basin is an active unconventional exploration target. In this thick calcareous siliceous 
mudstone, mineralogy and TOC are important parameters needed to define brittleness and high TOC for selecting sweet spots. These parameters can be 
obtained from hyperspectral imaging (HI) of core. Originally developed for the mining industry, HI uses a combination of short-wave infrared light 
(SWIR) and long-wave infrared light (LWIR) to create a continuous visual ‘map’ of the minerals in a core that respond to reflectance principles. HI, 
which requires no special preparation other than that the core is slabbed, clean, and dry, can be applied rapidly and provides mineralogical results related 
to various energy emitted in wavelength spectrum by either halogen bulb reflectance (short-wave quantification) or heat reflectance spectra (long-
wavelength quantification). We collected hyperspectral core imaging data from 300 feet of Leonardian Third Bone Spring Shale core located on the 
western slope of the Central Basin Platform in the Delaware Basin. We obtained detailed, continuous high-resolution mineralogical and textural 
information of the cored interval. Digital HI-derived single mineral and TOC curves, calibrated to discrete X-Ray Diffraction (XRD) and TOC 
measurements respectively, were imported as curves to display mineralogical variations with depth alongside X-Ray Fluorescence (XRF) data and 
mechanical data. We integrated the hyperspectral data with core description, thin-section, XRF, XRD, and TOC data to determine the mineralogy of 
different facies and to facilitate property ‘up-scaling’ from SEM and thin-section scales to understand the controls on reservoir quality. Mineralogy at the 
sub-cm scale was observed. Results were of much higher resolution than was obtained by core description or limited thin-section analysis. The calculated 
TOC compared favorably to measured RockEval data points, but the HI analysis has the advantage of being continuous. Hyperspectral imaging of cores is 
a valuable method for obtaining continuous rock-property data that can be integrated with other data to characterize a production interval. 
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Abstract 
 
The Leonardian Third Bone Spring Shale in the Delaware Basin is an active unconventional exploration target. In this thick calcareous siliceous mudstone, mineralogy and TOC are important parameters 
needed to define brittleness and high TOC for selecting sweet spots. These parameters can be obtained from hyperspectral imaging (HI) of core. Originally developed for the mining industry, HI uses a 
combination of short-wave infrared light (SWIR) and long-wave infrared light (LWIR) to create a continuous visual ‘map’ of the minerals in a core that respond to reflectance principles. HI, which 
requires no special preparation other than that the core is slabbed, clean, and dry, can be applied rapidly and provides mineralogical results related to various energy emitted in wavelength spectrum 
by either halogen bulb reflectance (short-wave quantification) or heat reflectance spectra (long-wavelength quantification).  
 
We collected hyperspectral core imaging data from 300 feet of Leonardian Third Bone Spring Shale core located on the western slope of the Central Basin Platform in the Delaware Basin. We obtained 
detailed, continuous high-resolution mineralogical and textural information of the cored interval. Digital HI-derived single mineral and TOC curves, calibrated to discrete X-Ray Diffraction (XRD) and 
TOC measurements respectively, were imported as curves to display mineralogical variations with depth alongside X-Ray Fluorescence (XRF) data and mechanical data. We integrated the hyperspectral 
data with core description, thin-section, XRF, XRD, and TOC data to determine the mineralogy of different facies and to facilitate property ‘up-scaling’ from SEM and thin-section scales to understand 
the controls on reservoir quality. Mineralogy at the sub-cm scale was observed. Results were of much higher resolution than was obtained by core description or limited thin-section analysis. The 
calculated TOC compared favorably to measured RockEval data points, but the HI analysis has the advantage of being continuous. Hyperspectral imaging of cores is a valuable method for obtaining 
continuous rock-property data that can be integrated with other data to characterize a production interval. 
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High-Resolution Hyperspectral Imaging (HI) of Core (SWIR and LWIR) 

 265 ft of core 
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 Siliciclastic lithofacies 
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siliciclastic mudstone 
• Burrowed mudstone 
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mudrock (>0.001 md) 
 
 

0.01

Helium porosity (%)
(Crushed rock analysis)

0.001

0.0001
0 2 4 6 8 10

7.293

7.753

8.150

5.578

0.004 0.002

0.004 0.003

0.005 0.004

0.001 0.001

Mean Geom. Mean

Helium porosity (%), nonburrowed

Helium porosity (%), Total

Helium porosity  (%), burrowed

Helium porosity (%), carbonate

Permeability (md), Total

Permeability (md), nonburrowed

Permeability (md), burrowed

Permeability (md), carbonate

XRD Mineralogy 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

9010

20

30

40

50

60

70

80

90

Detrital clay

Calcite Quartz/
feldspar

Matrix of carbonates is generally siliciclastic 
material 

Mean pyrite = 2.69% 
Clay = illite and mica 

Siliciclastic 
mudstones 

Carbonate 
gravity flows 

Pore Network 
 

 Reservoir composed of 
burrowed and nonburrowed 
siliciclastic mudstone  
 

 TOC ranges between 0.4 and 
4% 
 

 Burrowed facies has good TOC 
and good porosity 
 

 Poorly to well-laminated 
mudstone is the highest quality 
source rock (has best TOC and 
porosity) 
 

 Pore network dominated by OM 
pores followed by intraparticle 
pores 
 

 The carbonate gravity flows 
appear to have little if any affect 
on the reservoir (has lowest TOC 
and porosity) 
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 Continuous high-resolution 

mineralogy and textural 
information (mineral maps)  

 Digital HI-derived single mineral 
and TOC curves, calibrated to XRD 
and TOC imported as curves to 
display mineralogical variations 
with depth alongside XRF data 
and mechanical data 
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 Mineralogy at the sub-cm scale is observed.  

 
 Results are of much higher resolution than was obtained by core description or limited thin-section analysis.  

 
 The calculated TOC compared favorably to measured RockEval data points, but the HI analysis has the advantage of being continuous. 

 
 Hyperspectral imaging provided detailed, high-resolution mineralogical and textural information of a whole core from the  Third Bone Springs.  

 
 This technology produces mineral maps of the surface of a core that can be used to refine stratigraphic models and explain petrophysical responses.  

 
 Digital HI-derived single mineral curves calibrated to XRD can be utilized to display mineralogical variations with depth alongside open-hole wireline logs and mechanical data 

to understand mechanical stratigraphy. 
 

 Hyperspectral imaging of cores is a valuable method for obtaining continuous rock-property data that can be integrated with other data to characterize a production interval 
and facilitate ‘up-scaling.’  
 

 We conclude that this technique adds a wealth of data that other methods are unable to provide because of time and cost. Future work will include evaluation of the mid-
range infrared spectra (MWIR) to identify minerals and hydrocarbons in cores from unconventional resources. 
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