Application of Structural Seismic Attributes for “Polygonal Faults” Interpretation in Unconventional Carbonate Reservoir

Munir Elmahdy¹, Mohamed Fagelnour¹, Ibrahim Hamza¹, and Ali Gharieb¹

Search and Discovery Article #42467 (2019)**
Posted December 11, 2019

*Adapted from poster presentation given at 2019 AAPG Africa Region, The Eastern Mediterranean Mega-Basin: New Data, New Ideas and New Opportunities, Alexandra, Egypt, September 6-7, 2019
**Datapages © 2019 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/42467Elmahdy2019
1Khalda Petroleum Company, Cairo, Egypt (munir.elmahdy@khalda-eg.com)

Abstract

Seismic attributes are specific functions derived from seismic data, to enhance the appearance of different geologic features along the main seismic reflectors in both cross section and map views. In this work we applied volume seismic attributes in order to enhance the appearance of the polygonal faults located at the Abu El-Gharadig Basin, North of Western Desert, Egypt. The main objective is to illuminate the small or sub-seismic faults to determine their implications on the unconventional carbonate reservoir of the Middle Eocene Apollonia Formation.

The workflow started with the application of the structural smoothing attribute on a 3D post-stack, depth migrated seismic volume, in order to highlight the discontinuities of the seismic reflectors along the seismic sections. This is followed by the calculation of two main attributes, seismic coherence and curvature attributes. The most positive and most negative curvature attributes allowed us to identify small faults that are below seismic resolution. We found that the curvature attributes delineate faults distribution in our area of study better than other attributes. The presence of these faults had been verified by the geosteering technique applied during the drilling of one of the horizontal wells in the field. As a result, this study can potentially enhance the quality interpretation of seismic data and better identification of the major and minor faults that have an important implication on the fluid flow characterization of the reservoir.
Application of structural seismic attributes for “polygonal faults” interpretation in unconventional carbonate reservoir

Munir Elmahdy, Mohamed Fageinour, Ibrahim Hamza, Ali Ghanieh; munir.elmahdy@khalda-ag.com

Khalda Petroleum Company

ABSTRACT

Seismic attributes are specific functions derived from seismic data, to enhance the appearance of different geologic features along the main seismic reflectors in both cross-section and map views. In this work we applied volume seismic attributes in order to enhance the appearance of the polygonal faults located at the Abu El-Ghurair basin, North Western Desert, Egypt. The main objective is to illuminate the small or sub-seismic faults to determine its implication on the unconventional carbonate reservoir, of the Middle Eocene Apollonia Formation. The workflow started by the application of the structural smoothing attribute on a 3D post-stack, depth migrated seismic volume, in order to highlight the discontinuities of the seismic reflectors along the seismic sections. This is followed by the calculation of two main attributes, seismic coherence and curvature attributes. The most positive and most negative curvature attributes allowed us to identify small faults that are below seismic resolution. We found that the curvature attributes delineate faults distribution in our area of study better than other attributes. The presence of these faults had been verified by the geologists technique applied during the drilling of one of the horizontal wells in the field. As a result, this study can potentially enhance the quality interpretation of seismic data and better identification of the major and minor faults that have an important implication on the fluid flow characterization of the reservoir.

GEOLOGICAL SETTING

- The area of study is NEAG-JOT field, which is located at the north east portion of Abu El-Ghurair basin, north western Desert, Egypt.
- Geologically, there are two main types of faults disrupted the carbonate reservoir at Abu El-Ghurair basin. A major tectonic NW-SE normal fault bisected the field into two major hanging wall and footwall blocks and extends until the cretaceous sequence.
- Another group of minor non-tectonic layer bound, polygonal faults restricted only to the uppermost members of the Apollonia formation.
- Wireline logs show the top of the Apollonia pay zone members (A3 & A5) and their petrophysical parameters.

SEISMIC ATTRIBUTES

- We are concerned mainly with the geometric attributes, that are used to enhancement the appearance of any kind of discontinuities (fractures and faults) along the seismic data.
- The workflow followed with the application of structural smoothing attributes followed by the application of both the coherence and curvature attributes.

1. STRUCTURAL SMOOTHING

2a. COHERENCE ATTRIBUTE

2b. CURVATURE ATTRIBUTE

- Structural smoothing of the input seismic data, guided by the local structure, is used to highlight the discontinuities of the seismic reflectors.
- Seismic coherence is an edge detection attribute that depends upon the comparison of waveforms across the adjacent traces, and gives apparent continuity to the discontinuous features, such as faults.
- Curvature is a measure of the surface deformation at a particular point. The more deformed the surface, the larger its curvature. In a simplest way, it can be represented by arcs of circles with different radii, and determines how much the curve deviates from the straight line at a certain point.

RESULTS & CONCLUSION

- According to the faults determined by the curvature and coherence attributes, we found that both attributes can be considered as a perfect geophysical techniques for the determination of the faults or discontinuities in the carbonate reservoir.
- During the drilling of the horizontal well Wali-7H; geostatisticians determined the occurrence of sudden faults that was not appeared in the 3D structural model constructed for the JOT field. By correlating the depth and location of this fault, we found that these faults recognized only on the curvature slice, without any appearance on either the coherence slice or the seismic sections. This indicates that curvature technique have the ability to determine more minor faults than that resulted from the coherence attribute.