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Abstract

Reservoir production forecasts used to sanction project approvals are typically optimistic, sometimes significantly optimistic. Nandurdikar and
Wallace’s 2011 SPE paper, which was based on a large number of project lookbacks, noted that the production shortfall for projects that were
found to have reservoir-related “issues” such as optimistic OOIP or more than expected reservoir compartmentalization or heterogeneity
typically produced only about 55% of the volumes projected at time of project sanction. A portion of the forecast optimism, perhaps 15-25%,
may be explained by the impact of sparse data, particularly in the early phases of development when the number of wells is limited. The typical
parameters used to build reservoir models may contribute 20-40% of the forecast optimism particularly if relatively coarse grids and/or
significant horizontal and/or vertical upscaling is done prior to dynamic modeling. Well location optimization workflows may contribute 10-
25% of the observed forecast optimism. Human biases such as the real or perceived need to move a project forward, likely contribute 30-40%
to the observed forecast optimism. Mitigation of most of the mentioned sources that contribute to the observed production forecast optimism
may be mitigated through better understanding of the impact of static and dynamic modeling parameters on the resulting forecast. For example:
(1) Use the smallest possible grid cell size when building the initial geological model; (2) limit the amount that the geological model is
upscaled as the dynamic model is constructed; and (3) consider the potential bias introduced as a result of the location of delineation/appraisal
wells. Finally, the use of truly independent peer reviews may significantly reduce the impact of human bias, particularly in cases where there
may be a “management-induced” bias to advance or approve a particular project. Note that the observations reported above are based on a large
number of projects, particularly early development and mature fields undergoing waterflooding or steamflooding to maintain or improve
production volumes.
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Key Terms

* Forecast — Quantitative description of the oil, gas, and water
production from a reservoir as a function of a defined development
plan.

* Model — Numerical, often grid-based representation of the
subsurface properties such as porosity, permeability, and saturation.

e Optimistic Forecast — Actual hydrocarbon production of a given
project is less than that forecast at the time the project received

financial sanction (approval)
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Are Production Forecasts Optimistic?
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Are Production Forecasts Optimistic - Yes

Functional Arealmpact on

* For example, Nandurdikar and Wallace Production Forecast Attainment
reported in 2011 based on an Independent posersch -
Project Analysis Inc. (IPA) study, that major D —

capital projects were delivering, on

average, only 75% of production forecast at v
the time of financial sanction. Foities 1
* Major reasons for optimistic forecasts: oroduction Forecast Attainment
* Optimistic subsurface assumptions Note that projects impacted by
* Failure of internal assurance/review processes reie;:ﬂrs':f;uoefs:haecgf::a::lv
e Lack of accountability for production volumes production volumes
including project decision look-backs o neordikor s Wollacs, 2011, SPE 145487)
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Why Are Production Forecasts Optimistic?

1. Underlying geological models may not adequately model reservoir
heterogeneity due to model parameter choices.
2. Original or remaining hydrocarbon in place too high

e Sparse and/or non-representative data that is often biased towards
better reservoir quality

* |Inadequate or improperly used analog data and/or uncertainty
assessment workflows

3. Reservoir simulation models that are inadequate due to grid size, up-scaling,
and/or the use of well location optimization workflows.
4. Human Biases
* Technical team “sourced” bias
 Management “sourced” bias

AV
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Impact of Model Grid Size

* Geological models typically now have tens to hundreds of million of
model cells.

e Reservoir simulation models typically have only a million or so model
cells due to run-time “limits”.

* Consequently, geological models are generally up-scaled.

* An impact of up-scaling may be the loss of “geology”, particularly
permeability contrasts (e.g. barriers/baffles, thief zones).
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Impact of Model Grid Size On Forecast Recovery
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Recovery at 1 PVI
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20 m areal
grid |

Larger cell size = More
optimistic recovery

0 POR 40%
|

40 m areal grid

After Meddaugh et al., 2010

Larger model cell size = More optimistic recovery

Field Production Rate

Coarse Model
Giga (Base Case)
Model

Rate

Time
Coarse Model forecast 10-15% more

oil than a Giga-Cell Reservoir Model
(After Obi et al.,2014)
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Impact of Model Grid Size On Breakthrough Time

10

. Breakthrough
time for 1.25 m
cells = 18 days

--125m Cells |

--5.00m Cells |

Breakthrough
[+ time for 5.00 m
| i cells = 62 days

Steam Production Rate
(stb/day)

2009.50 2009.58 2009.67 2009.75 2009.83 2009.92 2010.00
Time (years)

Larger model cell size = Slower Steam

Breakthrough
From Meddaugh at al., 2012
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Impact of Model Grid Size On Breakthrough Time
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Breakthrough
From Meddaugh at al., 2012
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Impact of Model Grid Size On Breakthrough Time
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Larger model cell size = Slower Steam
Breakthrough
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Possible Reasons for Rapid Well Response to

Steam Injection

* High permeability pathways
* Fractures
* Karst zones

 Stratigraphy or diagenesis-
related (connected vugs)

ST-900: 1164

Natural fracture in stiff layer,

cementfll d. Cementfll d
rac inh rockofsa

Small _ Small

Fractures Karst Zone
in Core in Core

Calcite
cement

b & . lini
-, : Ining vug

Open and
Filled
Vugs in
Core
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Possible Reasons for Rapid Well Response to

Steam Injection

* High permeability pathways
* Fractures
* Karst zones
 Stratigraphy or diagenesis-
related (connected vugs)

* Connected very high
permeability “paths” not due to
any of the above

From Meddaugh at al., 2012
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Possible Reasons for Rapid Well Response to
Steam Injection

* High permeability pathways
* Fractures
* Karst zones
 Stratigraphy or diagenesis-
related (connected vugs)

e Connected very hlgh Preliminary Permeability Values Preliminary Permeability Values
permeability “paths” not due to

Grains (white)
Pores (black)

Organic
Matter (gray)

X-Perm = 6700mD X-Perm =720mD
any Of the d bove Y-Perm = 6100mD Y-Perm = 710mD
Z-Perm = 6900mD Z-Perm =790mD

Porosity of Both Samples is About 35%

From Meddaugh at al., 2012 A A N |
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How Well is Reservoir Heterogeneity Captured
in Reservoir Models?

1. Model Grid Size and Number of Cells

2. Spatial Continuity as modeled by the semivariogram for point-based
methods or the geometry of objects in object-based algorithms

3. Stratigraphy — Detail and Continuity
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How Well is Reservoir Heterogeneity Captured
in Reservoir Models?

1. Model Grid Size and Number of Cells — More is Better

2. Spatial Continuity as modeled by the Semivariogram for point-
based methods or the geometry of objects in object-based

algorithms
3. Stratigraphy — Detail and Continuity
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Semivariogram Basics

Semivariogram for Varying Values of the Range
(Sill = 10, Form = Exponential)

e Semivariogram (Yy) — Measure of
spatial continuity or
heterogeneity

e Range parameter (h) — Increases
as the spatial continuity of the
property of interest (e.g. -
porosity) increases Cw % w e w e w wm ww

* Small h = More Heterogeneity >eparation Distance
* Large h = Less Heterogeneity

Semivariogram Value

® Range 40 o Range 20 e Range 10 Range5 ®Rangel
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Impact of Semivariogram

Large Semivariogram Model Small Semivariogram Model

Range=1000m Range=100m

——n -—

* Top — Cross sections through
models generated with 1000m
range and 100m range

: (Meddaugh et al.,
Ty 2012)

* Bottom — Comparison of forecast < ST z

recovery for waterflood and g | s _—=== |2

steamflood. Note very small 2 :
I 3 - ""//Lar e Semivariogram B s

difference for waterflood and g “|/ 11 gram | | 8

. . s e ees s |5 . |
essentially no difference for Pore Volume Injected |[§ = = % m % m m w0
steamflood Waterflood Steamflood
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' Impact of Stratigraphic Detail — Northwest
Stevens Reservoir, Elk Hills

Northwest Stevens Reservoir

. Structure Map on A3a Horizon |

Well Data
Control Points —————,
Model Boundary —

4000’

Black square on west side of
structure map shows the study area. (Meddaugh, 2006)
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| Impact of Stratlgraphlc Detail — Northwest

Stevens Reservoir, Elk Hills

Summary of Geostatistical Analysis - L g || wemecmeen
Northwest Stevens Fine Layering Study N i |
e Cases studied: e 1 e P ]

s e _—
Alb - (LA
Al '

] Hrmrmrwrd| | %

* Two marker (top,
bottom only) \

* Three “major”

Y
markers e
. «“ . ” ; 1 3 A
* Nine “detailed o) .
markers T //

f't%l“!‘m*

,,__/ '

ol B A3a d | d
T | Two Major Al . = ,
™ il Marker Marker Marker ' T 1
Model Model Model it I e |
T T L S B TR
Isotropic Semivariogram Summary for Porosity

(Meddaugh, 2006)
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' Impact of Stratigraphic Detail — Northwest
Stevens Reservoir, Elk Hills

e Cases studied:

* Two marker (top,
bottom only)

* Three “major”
markers

* Nine “detailed”
markers
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Impact of Stratlgraphlc Detail — Northwest
Stevens Reservoir, Elk Hills

: Summary of Flow Simulation Results for the Three Levels of
° Summary Of: ﬂUId ﬂOW Correlation Detail, A1 and A2 Sands, NWS Reservoir, Elk
results obtained from Hills, California.
i : Correlati Wat R f | Cumulati R f
twenty realizations for Detail Case | Break- | Water | Production | Cumulative
Th h Break- th h5 | Producti
each. of the_ three .Ievels of brough | Break- | throughs | Production
stra.tlgraphlc detail shown (Days) (Mbbi) Yoars
at rg ht Two Marker 1091466 | 1003-1230 | 388+10.4 373-407
e Note that there is Iittle z&ﬁaa;;; 1106464 981-1212 387+7.6 373-399
diffe rence in recove ry or All Marker 1063+98 842-1250 381+11.6 365-404

(Meddaugh, 2006)

breakthrough time for
the three cases
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Impact of Sparse Data — Simple Case

* Forecast, as a function of well drilling order "“"" ‘.;;":i':'°"'";:::°;;:::,:“*" “‘L‘{fﬁl’v
. . . We Porosity % m eet
is shown in table at bottom. Forecast is A 27" 320 5
. . B 22 300 55
based on a data set consisting of 18 analog c 15 260 35
reservoirs.
1. One well forecast recovery range is
27-51%
2. Two well forecast recovery range is
34-46%
3. Three well forecast is 40% et Reservolrforecon
Order 1Well | 2Wells | 3 Wells
* Impact of sparse data on forecast may be asc | a1y | 462 | 308
. . 7, BAC 50.6 46.2 39.8
large; about 10-15 RFUs in this “very con [ 270 | es | o
simple” example. (From Meddaugh, 2015) sca | so6 | sss | 308

L hd
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e Variation of OOIP
as a Function of
“Time” for the
Humma Marrat
Reservoir

2003; 4 Wells

2000; 2 Wells

N

OOIP(no units)

j ——P10
\\ e
. | =*—P0

/

o
il

ZANE ==

1 2

3

< ' 5 ' 6 ' 7 ' 8 ' 9
Analysis Date

Summary of an actual reservoir change in estimated OOIP over time based
on information from Meddaugh et al. (2009). Note that the early and
significant rise in OOIP reflected sparse data obtained from mostly favorable
locations (high on structure). Only after a series of “true” delineation wells
after Analysis Date “4” did the OOIP uncertainty as shown by the spread of
the P10 and P90 curves significantly decrease. As noted by Meddaugh
(2009), the early, post-discovery wells were drilled as “safe producers” rather

than delineation wells.

2004; 5 Wells

2005; 7 Wells




Impact of Human Bias — A “Synthetic” Case

* Evaluation of Potential Technical Symthetic Ansog Dota e
Team or Management “Induced” oo 00" | o | e | "
Bias to Move a Project Towards or

Away from Project Sanction

25.7 418 65 42
22.0 586 105 45
21.3 230 45 37
22.6 283 S0 45
22.2 500 90 45
164 151 35 30
24.6 431 70 48
18.7 389 110 47
21.1 364 70 )
15.3 222 35 22
19.8 129 25 25
18.1 140 30 30
18.9 203 25 30
19.5 190 <0 42
19.2 240 S0 37
14.3 215 60 31

DINIO N8 W IN -

* An “experiment” was done
(Gilbert et al, 2015; Meddaugh
2015) in which a group of student
volunteers were given specific
instructions (next slide) and an
“exhaustive” analog data set with
18 reservoirs with known
reservoir properties and ultimate
recoveries (shown at right)
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Impact of Human Bias — A “Synthetic” Case

The “Experiment” Set-Up

Pro-Project Bias

“Your management has decided that it needs to
move forward on the project for the sake of their job
as well as yours (cutbacks are coming and bonuses
are planned for those staff retained!). You need this
project to go forward. Therefore, management has
“requested” the highest possible recovery forecast
that can be defended using a minimum of eight of
the 18 analog reservoirs. There will be no peer
review of the analog data base used to support your
analysis.”

From Meddaugh at al., 2012

Anti-Project Bias

“Your local management has decided that it needs to
cancel this dubious project even though the company
owner believes it to be a very good project. Thus,
you need help your local manager to cancel this
dubious project. Therefore, local management has
“requested” the lowest possible recovery forecast
that can be defended using a minimum of eight of
the 18 analog reservoirs. There will be no peer
review of the analog data base used to support your
analysis.”
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Impact of Human Bias — A “Synthetic” Case

Impact of Number of Analog Reservoirs on Forecast

Recovery - Minimum of 8 Analog Set "Draws" from
* :I:h = Recove rY’ FO reca St the ;ool of 18 Synthetic Anaglog Reservoirs
Experiment” Results:

* Most Optimistic Student Forecast (45% I
of OOIP) with Applied “Project
Forward” Bias Shown by Red Star

* Most Pessimistic Student Forecast
(33.5% of OOIP) with Applied “Project
Termination” Bias Shown by Blue Star

* Conclusion — Human Bias Impact Can
Be Quite Large; Easily 5-10 or more 200 1

0 2 4 6 8 10 12 14 16 18
R F U S Number of Analog Reservoirs

T od 9

46.0

»
o

[ ]
o

Recovery Forecast (%)
F=3 F=y F =y

0 =]

o o

w w
o
=)

20
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Summary of Potential Recovery Forecast Bias
Sources, Impact, and Direction

Direction of Bias — Optimistic, Pessimistic, or
RFUs Either
Small, less than 5 RFU. Either
Parameters

Vertical Upscaling Small, less than 5 RFU. Optimistic

Horizontal Upscaling, Areal Small to Large, likely between 5-15 Optimistic

Cell Size RFUs

Well Location Optimization Large, likely between 5 -15 RFU. May  Optimistic though additional study is much
tend to be larger for strongly needed.

anisotropic reservoirs (e.g.

channelized)

Sparse Data Large, likely between 10-15 RFUs Either; will be optimistic if early wells sample
higher quality reservoir volume as is the “usual”
case

Human Decision Bias Moderate, at least 5-10 RFUs; maybe  Either; will almost certainly be optimistic given the

higher (up to 15 RFUs) typical “need” to move projects towards sanction

From Meddaugh and Meddaugh., 2018
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Key Message

* Human, workflow, and software choices drive forecasts towards significant
optimism
* Many of the optimism “sources” may be mitigated by:
* Better use of statistics and analogs

* Wider knowledge of the impact of modeling parameters and well optimization (not
discussed in this talk) on forecasts

* Enhanced use of manafem_en’g-ind_ependent peer teams and assurance processes to
reduce human-induced optimism in forecasts

e Bottom line
» Better forecasts = Better use of capital and improved company financial performance

TR % . —— 4
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Better Practices

* Incorporate larger range of uncertainty — respect the potential impact of
sparse data as well as the potential “non-randomness” of sparse data

e Use models with small areal grid block (cell) sizes — larger number of
smaller cells is much better!

* Increased use of actual reservoir lookbacks to assess impact of sparse data
on in-place volumes and forecasts

* Increased use of external peer reviews to reduce project team and

management bias
. 4. T
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A Closmg Thought or Question — How Well
Do We Really “Know” Our Data?

Porosity Comparison
(Stratigraphic Unit Averages by Well for Wells Ato E)

o
-
N

*/
. T 3. %
* * -
g’ e \inu

pes . |
0 0.02 0.04 0.06 0.08 0.1 0.12

Porosity — Group C

o
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”~

@

o
(=4
@

Group B (circles)
=] (=}
o o
N »

Porosity — Group A (stars)
g

o

Comparison of porosity values obtained by three independent
project teams using the same well log and core data and the
same well log processing software (after Meddaugh et al.,
2011).
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Thank You






