P*Reducing Uncertainty in Fracture Modelling: Assessing User Bias
in Interpretations from Satellite Imagery*

Jonathan Long', Richard Jones', Susie Daniels', Sébastien Gilment*, David Oxlade’, and Max Wilkinson®

Search and Discovery Article #42427 (2019)**
Posted August 26, 2019

*Adapted from poster presentation given at AAPG 2019 Annual Convention & Exhibition, San Antonio, Texas, May 19-22, 2019
**Datapages © 2019. Serial rights given by author. For all other rights contact author directly. DOI:10.1306/42427Long2019

'Geospatial Research Ltd., Durham University, Durham, United Kingdom (jon@geospatial-research.com)

Abstract

Outcrop analogues provide crucial insights into fracture networks that are difficult to attain from borehole data alone, especially in exploration
areas where wells are sparse, and knowledge of the reservoir is minimal. However, the interpretation of geological data almost invariably
involves human input, which introduces interpreter bias into the workflow. To reduce the uncertainty that is inherent in data derived from
analogue outcrop studies, the degree to which different interpreters may affect the resultant outputs must be understood, and non-geological
variations need to be constrained and mitigated. We apply this approach to quantify the variability in fracture network interpretations derived
from satellite imagery, using a population of geologists of varying levels of expertise and experience.

In this study we asked all participants to pick fractures from the same satellite image, at the same scale, under the same conditions, and then
compared their results. We selected examples of different fractured carbonate units with varying degrees of image quality. Our analysis of the
results focuses on the variations in topology, orientation, intensity and length within the resultant fracture network picked by each participant.
We illustrate the implications of the variability with respect to DFN modeling and suggest strategies to standardize fracture interpretations to
reduce picker-bias, by post-processing the picks using a topological correction and linkage algorithm.

As expected, we see significant variability in the interpretative picks from different geologists. The effect of this variability on fracture
modelling is addressed with respect to orientation, connectivity, and length-intensity scaling. The biggest variations were in how different
people digitized closely spaced fractures (fracture arrays), and which fractures people chose to pick. End-member styles in the picking were
either to pick many segmented co-aligned fractures, or to pick a single fracture spanning long distances. Different styles have a profound effect
on inferred size-intensity scaling relations and can result in a three-fold range in picked fracture intensity within an area.

By applying a topological and linkage correction to the picked data the variance in the measured parameters decreased. However, significant
variations in bulk fracture properties still existed in the post-processed interpretations. Variability can be further mitigated by improved training
of inexperienced pickers by fracture experts, or by expert-led implementation of machine learning algorithms. Understanding the use-case for a
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specific fracture study is important: the human aspect of uncertainty in fracture modelling can and should be minimized at all stages in the
interpretation process.
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