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Abstract 

Outcrop analogues provide crucial insights into fracture networks that are difficult to attain from borehole data alone, especially in exploration 
areas where wells are sparse, and knowledge of the reservoir is minimal. However, the interpretation of geological data almost invariably 
involves human input, which introduces interpreter bias into the workflow. To reduce the uncertainty that is inherent in data derived from 
analogue outcrop studies, the degree to which different interpreters may affect the resultant outputs must be understood, and non-geological 
variations need to be constrained and mitigated. We apply this approach to quantify the variability in fracture network interpretations derived 
from satellite imagery, using a population of geologists of varying levels of expertise and experience. 

In this study we asked all participants to pick fractures from the same satellite image, at the same scale, under the same conditions, and then 
compared their results. We selected examples of different fractured carbonate units with varying degrees of image quality. Our analysis of the 
results focuses on the variations in topology, orientation, intensity and length within the resultant fracture network picked by each participant. 
We illustrate the implications of the variability with respect to DFN modeling and suggest strategies to standardize fracture interpretations to 
reduce picker-bias, by post-processing the picks using a topological correction and linkage algorithm. 

As expected, we see significant variability in the interpretative picks from different geologists. The effect of this variability on fracture 
modelling is addressed with respect to orientation, connectivity, and length-intensity scaling. The biggest variations were in how different 
people digitized closely spaced fractures (fracture arrays), and which fractures people chose to pick. End-member styles in the picking were 
either to pick many segmented co-aligned fractures, or to pick a single fracture spanning long distances. Different styles have a profound effect 
on inferred size-intensity scaling relations and can result in a three-fold range in picked fracture intensity within an area. 

By applying a topological and linkage correction to the picked data the variance in the measured parameters decreased. However, significant 
variations in bulk fracture properties still existed in the post-processed interpretations. Variability can be further mitigated by improved training 
of inexperienced pickers by fracture experts, or by expert-led implementation of machine learning algorithms. Understanding the use-case for a 
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specific fracture study is important: the human aspect of uncertainty in fracture modelling can and should be minimized at all stages in the 
interpretation process. 
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ID P21 (Xmin) PL: α Max Length*Mean Length*P21 (m-1) Mean spacing (m)
A001 0.29 1.87 29.07 4.19 0.01 160.08
A002 0.64 1.49 39.53 9.02 0.07 13.66
A003 0.68 1.41 43.54 10.72 0.11 8.97
A004 0.24 1.77 23.22 4.95 0.01 125.44
A005 0.45 1.54 43.35 7.25 0.04 24.34
A006 0.52 1.86 17.45 4.23 0.01 85.92
A007 0.41 1.52 39.93 7.87 0.04 24.36
A008 0.39 1.48 39.97 8.53 0.05 21.19
A009 0.33 1.62 27.96 6.11 0.02 47.29
A010 0.31 1.54 39.83 8.49 0.03 35.23
A011 0.47 1.67 37.28 5.98 0.02 41.13
A012 0.24 1.55 49.42 8.22 0.02 46.23
A013 0.26 1.86 31.70 4.69 0.01 170.24
B001 0.70 1.59 69.20 6.50 0.05 18.89
B002 0.57 1.39 46.53 9.13 0.10 9.91
B003 0.68 1.48 45.40 7.51 0.08 12.43
B004 0.55 1.61 37.56 6.02 0.04 26.56
B005 0.58 1.31 54.43 12.32 0.15 6.60
B006 0.63 1.49 53.29 6.96 0.07 13.89
B007 0.66 1.58 56.95 6.57 0.05 19.53
B008 0.48 1.60 54.24 6.07 0.03 28.84
B009 0.42 1.71 31.21 4.96 0.02 55.32
B010 0.81 1.64 40.65 5.53 0.05 20.50
B011 0.72 2.07 27.87 3.30 0.01 159.35
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Fig. 4 Bulk Intensity Variations
(Top) Bulk intensity for each participant, per AOI. 
(Right) Examples form each AOI showing the end member picking 
results (high and low cases), corresponding values are highlighted in 
the table above. 
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Sources of variation in fracture data collected from outcrop analogues
The aim of this poster is to look at variations in fractures properties, used in DFN modelling, that result from different users interpreting the same satellite 
data. Other sources of variation are not considered. The interpretation of geological data almost invariably involves human input, which introduces 
interpreter bias into the workflow [1, 2, 3].
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• Participants were asked to pick two 
circular AOIs with varying amounts of 
vegetation cover. (Fig. 1A,B)

• Images were interpreted at a fixed 
resolution in ArcMap using straight line 
polylines with no snapping.

• Participants also completed a 
questionnaire (see box 5).  This is a pilot 
study, and the statistical significance in 
correlation between answers and the 
observed variation in results may be 
limited.

• We looked at variation in orientation, 
bulk intensity, connectivity and 
length-intensity scaling (see boxes 
4-7).

• The raw results and post-processed 
results were analysed to look for 
variation in fracture properties due to 
different users (see box 7).

•  Cleaning the topology mainly shifts the data along the I-Y axis but does not remove the large spread in the picked connectivity (Fig. 7). AOI A has the 
greatest range of values but both AOIs still span all three regions of the IYX plot. Region 1: no percolation; Region 2: orientation cluster systems 
become connected; Region 3: density clustered systems are connected [4].

• Applying the linkage post-processing reduces some of the outliers in the length-intensity data (Fig. 8) in cases where people chose to pick co-aligned 
fractures as segmented traces. However a significant spread of inferred intensities and fitted power-law distributions (α) still remain after 
post-processing. These differences are exaggerated when upscaled to modelling scale ranges (Fig. 9). 

• Note how the scaling distribution dominates the resultant upscaled values more than the intensity at small scales (Fig. 9: see B001 and B011). 
Therefore the way in which people pick fracture length is highly important (not just how many fractures they pick in total).

•  Fracture networks are highly susceptible to user picking differences, which adds uncertainty to fracture 
modelling parameters, especially length, intensity, scaling and connectivity.

•  Changes in outcrop/image quality within an AOI causes increase in variance within the measured 
fracture properties.

•  Increasing the skill level of people interpreting fractures and applying post-processing corrections can 
help standardise results for DFN modelling.

• However, post-processing can only partially mitigate against the effects of under- or over-picking and 
consequent effect upon the derived length distributions within satellite datasets.

•  AOI A has a greater percentage of vegetation 
cover and there is also a greater variation in 
observed picks.

•  Most people pick the same dominant 
orientation peaks, but when vegetation 
increases weaker sets are poorly identified.

•  AOI A: 2.9x difference between min and max 
bulk intensity (Fig. 4).

• AOI B: 2x difference between min and max 
bulk intensity (Fig. 4).

•  With greater vegetation cover (ambiguity in 
signal to noise in AOI A) there is an increase in 
the variation of picked fracture traces.

• Orientation showed the least variation of all 
the fracture properties investigated.

In spite of the low sample size 
results from Levene's test show 
that there is a significant 
difference (p > 0.90) in variance 
of bulk intensity between the 
following groups of people:

•  People who consider 
themselves structural 
geologists and those who 
don't.

•  People with > 3 years 
structural geology 
experience and those with 
less.

•  People who have measured 
fractures in outcrop many 
times and those who have 
only done it once or twice.

•  People who previlusly have 
measured fractures in 
satellite data and those 
who haven't.

In summary, there is less 
variance within the experienced 
population; e.g. experienced 
people pick similar intensities of 
fractures, in contrast with 
inexperienced groups.

•  Post-processing of the fracture picks is done 
to try and reduce the variance in the sample 
and standardise the results.

• Processing steps aim to improve geological 
representation of the natural fracture network within the modelled DFN (Fig. 6). 

1. Topological uncertainty in the digitalisation of end-point connectivity is cleaned using a buffer size 
proportional to the resolution of the underlying satellite imagery (Fig. 6A).

2. The input parameters that define whether fractures are co-aligned are angular difference and 
proximity of end nodes to each other (Fig. 6B). An elliptical search is used to find nodes within a 
constant area (ellipse axes oriented parallel and normal to the fracture trace). When multiple valid 
end points are located, the linkage favours the creation of the longest most co-aligned fracture.
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Fig. 1 Test Area Of Interest (AOI)
(A and B) Satellite AOIs given to the participants for fracture picking. (C and D) Concurrence 
map for all participants, darker colours represent areas most commonly picked. 

Fig. 3 Orientation of Picks for AOI B
Eleven participants completed AOI B.

Fig. 2 Orientation of Picks for AOI A
Thirteen participants completed AOI A.

Fig. 7 Connectivity
(A) IYX diagram [4] showing the effect of applying the topological and auto-linkage 
corrections. (B to E) Before and after examples of how the topology changes during the 
processing steps. (A) Applying the post-processing steps predominately shifts the data along 
the I-Y axis. Despite the post-processing there is still a significant spread in inferred 
connectivity.  

Fig. 9 Upscaling Length and Intensity
Summary of length intensity distribution parameters for the 
original and post-processed picks, per participant. The inline bar 
charts graphically show the variation in upscaled P21 intensities. 
Note how the difference in predicted intensity of fractures ≥ 100m 
increases. This is due to changes in the power-law scaling 
parameter alpha, α. For example, B001 and B011 have similar 
starting P21 intensities but different power-law alpha values 
resulting in very different upscaling. 

Fig. 5 Link Co-Aligned Fractures
(A) Hypothetical set of sequentially located fracture traces with similar 
orientations observed on a bedding pavement and in cliff section. 
(B and C) Resultant DFN modelling scenarios: (B) Measured traces treated 
separately and spatially unrelated to each other. (C) Grey dashed line 
represents the modelled fractures corresponding to the co-aligned fracture 
traces that were auto-linked to represent a single fracture array. Fig. 6 Linkage Criteria

(A) Network topology is corrected by applying a buffer around each 
fracture. Ends of other fractures that fall in the buffer are considered to be 
terminating at that fracture. (B) At the end of each fracture search ellipses 
are used to locate other end-points. If the angular separation is within 
tolerance fractures are linked. If multiple end-points are found the one with 
the highest probability is used. (C) Example of linked fracture trace.

    Fig. 8 Length-Intensity
(Left) Length-intensity distributions plotted on log-log charts for each AOI, for original and processed picks. Linking co-aligned fractures causes the 
distribution to become shallower; instances where short segmented fracture traces have been picked can cause a substantial change (see B011). 
(Right) Examples of end-member picking styles (labelled in plots on left). Top row shows highly segmented picking style; bottom row are examples of 
picking that results in long, continuous fractures.
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