Scaling Analysis of the Coupled Compaction, Kerogen Conversion,
and Petroleum Expulsion During Geological Maturation*

Qingwang Yuan®, Yashar Mehmani', Alan Burnham?, Alexandre Lapene?, Johannes Wendebourg®, and Hamdi Tchelepi*

Search and Discovery Acrticle #42409 (2019)**
Posted August 5, 2019

*Adapted from oral presentation given at 2019 AAPG Annual Convention and Exhibition, San Antonio, Texas, May 19-22, 2019
**Datapages © 2019 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/42409Yuan2019

!Stanford University, Stanford, CA (qyuan2@stanford.edu)
’Research and Development Division, Total, Los Altos, CA
*Total E&P Americas, LLC, Houston, TX

Abstract

Porosity rebound is associated with the kerogen conversion into hydrocarbons and the overpressure development in the coupled sedimentary
compaction, kerogen conversion, sorption, and fluids expulsion processes. There are a large number of variables with uncertainties, which
affect the porosity rebound. Uncertainty analysis to determine their sensitivity and importance via 3D basin-scale simulations is very time-
consuming. To address this problem, we developed a simple but efficient model and performed scaling analysis to identify the relative
importance of each mechanism/parameter. We then reduce the number of parameters to the most essential in controlling porosity rebound. The
procedure is to first develop a unit cell model by considering elastic and inelastic deformation of solids, thermal expansion, primary and
secondary cracking, sorption of hydrocarbon, and fluid expulsion. Inspectional analysis is then employed to obtain dimensionless equations as
well as dimensionless numbers. The competing mechanisms for porosity rebound are represented by several dimensionless numbers. A two-
level experimental design is then conducted to generate the combinations of all dimensionless numbers and corresponding scenarios. Through
this research, we have reduced the variables from 53 physical parameters to 37 dimensionless numbers, out of which only 5 have the largest
impact on porosity rebound. The ranking of the most important parameters associated with the dimensionless numbers follows: initial kerogen
content, geothermal heating rate, compaction coefficient, fluid expulsion rate, and reaction rate. The results are verified against PetroMod
simulations. We expect this work to provide useful guidelines in greatly simplifying analyses and simulations in basin modeling.
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Motivation
Magnitude of extension Ease Case -

Grain conductivity

Lower Miocene source kinetics

Background heat flow
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Objective

» Introduce the new concept of mechanism-based uncertainty
analysis

» ldentify the relative importance of major mechanisms involved in
porosity rebound during petroleum generation using scaling
analysis
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Model Development and Governing Equations

Main mechanisms in the model \
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Model Development and Governing Equations

Before oil and gas generated Oil and gas generation

Mineral
My Xm

Unit cell model:

B Mineral
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dt
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dt
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Model Development and Governing Equations

Temperature change:

T=T,+ th—T+ tG
= Iy wdz_o wlbr

T,: surface temperature; w: constant deposition rate; G: geothermal gradient

Mass of water change:
dmin n dmi®

t . .
. ——=0 (water mass change is due to water expulsion)

my, = miy + moHt -

Porosity change Thermal expansion Inelastic deformation

dlv,,
).)

Water saturation change Compressibility

= dmi}  d(pyVp®8Sy) ; do as,, dT dP,
dt dt o \dt’ (%t' dt’ a%t’

dm‘(/)vut CAP , . .
il Ii_ K(p)K,, (S, )AP (Darcy’s type fluid expulsion)
w

-
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Model Development and Governing Equations

Water saturation change:

Water saturation Inelastic deformation
Porosity Overpressure
[ d@] dAP [@5 dv,
w @— (DSw(ﬁw‘l‘ﬁb/)iH J
— ——K(CP)Krw(Sw)— 4mm \Water expulsion
w
—@S,,(—aty, + ap) WGy 4mm Thermal expansion

@Sy [(Bw + Bp)pwgw — Brppgw] <4mm Compressibility

AP = P; — P, (overpressure = pore pressure — hydrostatic pressure)
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Model Development and Governing Equations

Primary Cracking:
Kerogen w0l + [fy1Gas+ fcor1 Coke

dm,
dt

= —kmy

generation

Secondary Cracking:
Oil wwwmp [g2 Gas + feokz Coke

[dmo

] = —k,m,
cracking

Only one component for oil and one component for gas
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Model Development and Governing Equations

11 governing equations (ODEs) and 11 unknowns:

Liquids volume fraction Solids volume fraction change Porosity change
| (00]
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9. Fluid volume fraction change
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10. Total volume fraction change 11. Compaction law
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Variations of Porosity and Volume Fraction of Hydrocarbons
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Variations of Porosity and Volume Fraction of Hydrocarbons
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Dimensionless Groups and Their Relative Importance

(1) Empirical relations related: viscosity of water, oil, and gas

(2) Property related (mainly property ratios between different components)

5 Dimensionless thermal expansion coefficient:
: sorp sorp sep sep
. a k k a a
: Dg = —=,Dy3 = —,Dyy = —=,Dys = ———,Dys = ——,Dy7 = ——, Dpg = ——
m Om m m m m Om
: Dimensionless compressibility coefficient:
Buw B Beok o g " o g
Dy =7, D1 =7, D1y ===, D1g = ——, D19 = ——,Dp0 = ——,Dpy = —p—
BT B B B Y B Y B Bm
Dlmensmnless density:
sep
p Pk Pcok p Pk Pk
Dg = ﬁ:Du = psep'D35 = %»DQ - pgep'D57 - ?'Dn = p;Tm
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Dimensionless Groups and Their Relative Importance

(3) Coupled process related:

Compaction:
— Cm
" Bm
Reaction:

D43 = A]_T
Ear

RAT
Heating:

D,

Dyy =

Expulsion:

KPt
D3 =

B Uw VboBm

compaction coefficient
Dimensionless compaction coefficient 1qck elastic compressibility

compaction coefficient

Damkonhler-like number ™ eference flow rate

Arrhenius number 2ctivation energy

potential energy

Dimensionless thermal expansion coefficient
surface temperature

Reduced initial temperature temperature difference

: : : water expulsion rate
Dimensionless expulsion rate

reference flow rate o
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Dimensionless Groups and Their Relative Importance

Range (dimensional)
: 53 physical/dimensional parameters

Min. Max.
1

52 dependent dimensionless groups

37 independent dimensionless groups

: _ _ _ Min. Max.
: 28 independent dimensionless groups

of interest
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Dimensionless Groups and Their Relative Importance

Experimental Design - Two-level Factorial Design

=y y . response (e.g. max. porosity
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Dimensionless Groups and Their Relative Importance

Standardized regression coefficients
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Comparisons with PetroMod
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My model VS. PetroMod
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Conclusions

= New model is developed for the coupled compaction, kerogen conversion,

and expulsion processes

= Major mechanisms and their corresponding dimensionless groups are

iIdentified and their relative importance is determined

= Mechanism-based uncertainty analysis concept is introduced
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