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Abstract 
 
The reconstruction of paleo-fluid circulations in sedimentary basins is often under-constrained. This results from both the analytical challenge 
of performing the required analyses on the diagenetic mineral phases available in small quantities and the lack of tracers for some of the key 
diagenetic parameters (temperature, timing, fluid composition). Modern thermal reconstructions rely on various thermochronology methods 
such as fission-track, (U-Th)/He or K-Ar systems on U- or K-rich minerals, generally limited to siliciclastic lithologies. Carbonate rocks do not 
contain such mineral phases, limiting the possibilities to evaluate their thermal history. Given the widespread occurrence of carbonate 
lithologies, and their ubiquity in a variety of crustal and sedimentary settings, the development of a carbonate thermo-chronometer would open 
a new realm of applications in basin analysis. By coupling carbonate clumped isotope Δ47 thermometry, laser ablation U-Pb dating and fluid 
inclusion studies, new perspectives are opened for determining the temperatures of carbonate diagenetic phases together with the origin and 
composition of their parent fluids.  
 
To validate these approaches on a well constrained case history, analyses were performed on carbonate specimens from 2000 m deep cores in a 
Middle Jurassic reservoir formation of the Paris Basin (France). Laser ablation U-Pb dating was achieved on low U-bearing carbonates with an 
absolute uncertainty between 2.2 Ma and 16 Ma across a time span from 154 to 37 Myrs. These ages revealed successive phases of carbonates 
precipitated from early to late diagenetic conditions. The integration of these U-Pb data with Δ47 paleo-temperatures allowed defining time-
temperature couples for each carbonate phase investigated that directly reveal the thermal history of the reservoir unit. This time-temperature 
path well agrees with the thermal scenario modelled on underlying shale layers and calibrated against organic matter maturity. This emerging 
carbonate Δ47/(U-Pb) thermo-chronometer has thus the ability to accurately and self consistently reconstruct thermal and fluid-flow histories of 
carbonate-bearing rocks within the oil window maturity zone (0-120°C). Then, this methodology was applied to constrain the occurrence of the 
Thermochemical Sulphate Reduction (TSR) reaction during the burial history of carbonate reservoirs from the Western Canada Sedimentary 



Basin. The study focused on the Devonian reefal carbonate reservoirs of the Nisku and Leduc formations, where some hydrocarbon fields have 
experienced TSR and contain up to 30% of H2S. Seven cores were chosen from areas of the basin having experienced different thermal 
histories and characterized by contrasting H2S production. The thermal information obtained from calcite fluid inclusions was combined with 
the burial-thermal history modelled for Devonian rocks of each of the investigated cores. This allowed to infer possible timing and fluid 
geochemistry for the occurrence of TSR reaction at basin scale. 
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TOOLS FOR INTEGRATED STUDIES

New developments promise to overcome 

limitations of conventional approaches
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CONVENTIONAL THERMOMETERS & FLUID TRACERS IN 
CARBONATE DIAGENESIS
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δ18Ofluid = f (T, δ18Ocarb)

1) Fluid Inclusions (FI) microthermometry

- Temperature - Salinity - Pressure

2) Carbonate-fluid O isotope equilibrium

Limitations of FIs in carbonates: small, 

metastable, reequilibrated…
δδδδ18Ofluid may vary through time, difficult to
predict for burial diagenetic carbonates

Common practice
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« NEW » THERMOMETER & FLUID TRACER : CLUMPED
ISOTOPES (∆47) 

∆∆∆∆47 analysis on

CARBONATE

Absolute

⇒ δ18O
⇒ Temperature

of PARENT FLUID

• Abundance of 13C-18O in carbonate molecules ����

function of crystallisation T

• Applicable to ≠≠≠≠ mineralogy (calcite, dolomite…) in
the 0 to 200°°°°C���� diagenesis realm

13C-18O 

bond

Clumped molecule

• Allows to reconstruct independently the δδδδ18Ofluid
composition���� marine, meteoric, brine...

Overcomes many limits of fluid inclusion

microthermometry (optical, thermal reequilibration,

metastability…)

Carbonate powder

(5-10 mg)

BUT: very few study on natural samples
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CONVENTIONAL « CHRONOMETERS » IN CARBONATE 
DIAGENESIS

Relative: Paragenesis

Indirect: FIs + thermal modeling

Based on cross-cutting relationships
between carbonate phases

Absolute: U-Pb decay series

In basins with well-known burial-thermal
histories: fitting FI microthermometry
data with modeled thermal curves.

Used since the ’80s via ID-TIMS.

Strong limits: high U contents needed, large

volumes required, bulk analysis, time

consuming

Strongly « user » 

dependent

- Uncertainties in thermal model and FI data

- Thermal equilibrium hypothesis

- Different age solutions for a given T

Absolute constraint on diagenesis 

timing, though so far seldom applied…



|   ©  2 0 1 6  I F P E N

Laser Ablation (LA) 
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(~200µµµµm) on thin section

U-Pb absolute dating of carbonate minerals

by Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) 

• In situ ablation on thin section or slab

• Spot size:  213µm (or less)

• U detection limit:  0.1 – 0.04 ppb

• Very light sample preparation

• Pre-screening to detect good spots for dating

No sample destruction

No phase mixing

Suitable for low U minerals

No time consuming

« NEW CHRONOMETER » : U AND PB DATING
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4 cores were selected

from the depocenter, 

similar thermal history

(Tmax Toarcian 435-440 °C)

W - E  c r o s s - s e c t i o n

PARIS BASIN
THERMAL  AND FLUID-FLOW HISTORY (MIDDLE JURASSIC, PARIS BASIN)

Parent fluid

Temperature – salinity -

δδδδ18Ofluid

Carbonate 

cements

~15 mg of carbonate powder Single FI analysis (few µµµµm)

Present depth: 1,6-1,9 km

Max heating: 90-95°°°°C
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5 Cal-Dol cements with uniform CL, 

δδδδ18O, δδδδ13C, Primary FIs

PARIS BASIN
∆47 VALIDATION ON NATURAL BURIAL CALCITES AND DOLOMITES (60-100°C)

Excellent match between the two thermometers for T between 60-100 °C.

Overcome microthermometry limits due to metastability � less time-
consuming temperature measurements

Variable salinity of the parent fluids does not affect the Δ47 signal.
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Samples used for 

microthermometry

(data comparison)

PARIS BASIN
THERMAL AND FLUID-FLOW HISTORY (MIDDLE JURASSIC, PARIS BASIN)

Temperature modelledParis Basin model
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PARIS BASIN 
DIRECT DATING AND FLUID-FLOW

TΔ47 = 58±6°C 

TΔ47 = 87±1°C 

t = 120.7±2.2Ma 

t = 107±13Ma 

Cal1

Dol1

Hydrothermal origin for Dol1?

Δ47/U-Pb: A new thermo-
chronometer for carbonate 

bearing rocks to help to better
calibrate numerical model
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WESTERN CANADIAN BASIN 
THERMOCHEMICAL SULFATE REDUCTION (TSR)

(HC ± S) (2) + S(s) OSC(l) + PB(s)

Within Carbonate (Dolomite) reservoir

Sulfate (Anhydrite) + HC(1) + H2O ���� Carbonate (Calcite) + H2S + CO2 + HC(2) + H2O

Ca2+
SO4

2-

HC
H2S

OWCH2O

Anhydrite Seal

Complex series of redox reactions

Temperature > 110°C

Enriched in S

CaMg(CO3 )2(s)

CaSO4(s) (HC ± S) (1) CaCO3(s)

HC CaCO3 CO2

Can we use diagetenic

characterisation tools to 

contrain TSR modelling?
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25

Frasnian-Fammenian: 
375-365 Ma

(modified from Machel & Buschkuehle, 2008)

WESTERN CANADIAN BASIN
FLUID-MINERAL CHARACTERIZATION METHODS

Study area:

Southesk-Cairn Carbonate Complex - SCCC).  7 studied wells.

Platform sediments (white), reefs (light grey) and basin sediments (grey). 

Fields in Devonian reef carbonates produce >> 30% H2S.

Tools:

Optical, cathodoluminescence petrography

O-C isotope analysis

Fluid inclusion (FI) microthermometry

U-Pb carbonate chronometry by LA-ICP-MS
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Dolomites

Blocky calcites

TSR ?

Saddle Dolo

Blocky Cal
Bitumen

Blocky calcite  post-date saddle dolomite and bitumen.

δδδδ18O of dolomite shows evolution of water content from dep osit.

δδδδ13C of calcite influenced by HC.

Calcite: better candidate to gather constraints on TSR !!

WESTERN CANADIAN BASIN
O-C ISOTOPES (‰, V-PDB)

Dolomite precipitated

from Devonian sea water 
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Dolomite: aqueous FI, NO GAS.
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of CLATHRATES (water-GAS)
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FLUID INCLUSION MICROTHERMOMETRY

Water salinity of 
Calcite FI < Dolomite FI
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WESTERN CANADIAN BASIN
BASIN MODELLING AT NISKU FM.
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WESTERN CANADIAN BASIN
MODELLING TSR

Chemical balance of TSR reaction proposed by Uteyev (2011)
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TAKE HOME MESSAGE

(a) Quantify Temperature and Timing of Carbonate formation

(b) Provide calibration points of numerical models in the past

(c) Identify TSR related carbonate phases 

(d) Quantify the possible Temperature-Timing of TSR onset

(e) Help to validate the hypothesis of the TSR risk study (basin 

modeling)

Application of a characterization workflow based on diagenetic

carbonate minerals allowed to:

Salinity

Temperature (T)

δδδδ18Ofluid

H2S

Timing (t)
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