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Abstract

An integrated subsurface modelling workflow (geology, geophysics, petrophysics, reservoir and production engineering) was utilized to rebuild
a static and dynamic model of PetroSA’s F-A gas field to optimize reservoir management and recovery as well as identify remaining potential
for infill well drilling. The last model built was 6 years after production, whereas now in 2018, after 26 years of production, considerably more
data is available to guide the model building process.

Subsequent to the first well drilled in 1970 in the F-A field area (F-Al), which encountered hydrocarbon shows in a shallow marine syn-rift
sandstone, it was only in 1980 that the true hydrocarbon potential of the so-called F-A gas/condensate field was ascertained. Fifteen follow-up
appraisal wells were drilled from 1981 to 1985 to delineate the field, all on the basis of seismic 2D lines. Six of these wells encountered
commercially viable gas-bearing reservoirs and provided the basis of the F-A field development with the start of gas and condensate production
at the end of 1992.

Over the past 26 years since commencement of production, major technical milestones like seismic 3D surveys in 1986 and 1997/8, history
matching studies in 1994 and 1999, a geochemical study in 1998 as well as past and current production and reservoir pressure history have
contributed to changes in hydrocarbon estimates and the view regarding reservoir connectivity.

A greatly revised static and dynamic model was built in 2017/18 to replace an old 1999 dynamic model. Static Modelling of the reservoir
depends greatly on the accuracy of the structural model, which forms the container into which the reservoir properties can be populated.
Structural models were created using different modelling algorithms. The inputs to the structural model were horizon and fault interpretations
based on seismic character, fault seal analysis, material balance, and pressure analysis.

Updated petrophysical modelling which includes a facies dependent permeability model and saturation height model was integrated with
Seismic attributes like Acoustic Impedance as a secondary variable, to model properties such as porosity away from the wells.



This paper aims to demonstrate the importance of integrating different disciplines to build a robust static model; how different methods of
building the structural model impacts on the reservoir simulation; and how the geological understanding has changed since the field was
discovered.
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Figure 1 Location map of the study area

Aims of new study

« Generating an up-to-date dynamic model for good reservoir and field

management practice, including preparation for abandonment, using all

available geoscience, reservoir and production engineering data.

 Build more detailed static reservoir model, fit for dynamic modeling.

* Quantify the uncertainty in the field to estimate upside potential for the

field.

e« Assess corner point gridding and volume based modeling to test

suitability for dynamic modeling and uncertainty management.

Introduction

F-A Gas Field located 80 km South of Mossel Bay

Field is first and oldest gas field in South Africa — producing

26 years

Largest gas field in offshore South Africa

Supply world’s first commercial GTL plant in Mossel Bay

Highly faulted, geologically complex field

Several

generations of models attempted

complexity

Previous static and dynamic models not adequately updated
with recent production data from various fault blocks, leading

to miss-match between production, and previous model’s

GIIP estimations.

New interpretations changed view and size of field

Newer computer capabilities, especially computing power

and Improvements to modeling algorithm are now available,

allowing for more detail to be incorporated to models
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Figure 2 Comparison between previous field outline in green, vs the new outline in red.
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Figure 3 Workflow adopted to test different modeling approaches best suited for reservoir simulation and resource uncertainty
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Core data analyses used to:

« Identify lithofacies and environments of deposition
 Determine physical reservoir properties and to calibrate log evaluation
Dipmeter to aid understanding of depositional and areal distribution trends

Conceptual geological model using modern analogues to aid understanding of

reservoir geometry

Conventional 3D reflection seismic data interpretation for structural framework

(surfaces, faults and compartmentalization)

Seismic attributes (acoustic impedance) for reservoir property trends (porosity)

Seismic Attribute Volume
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 Models both begin with structural famework
consisting of faults and seismic horizons

e Volume based modelling require building of
geological volume model as next step

o Corner point gridding needs accurate pillar fault
model with as few fault-to-fault truncations as
possible

e To build static grid

* Volume based approach converts volume model
to orthogonal grid

o Corner point gridding results in distorted grid

Volume Based Modeling

Corner Point Gridding

Intermediate Step

Gridding Step
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Volume based approach results in staircase fault
model
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Dynamic Model Initialization Results
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e Several attempts to initialize dynamic models using static models of varying detail, such

as different gridding approaches, coarser grids and fewer extra reservoir parameters

« Corner Point grids ran for much longer than Volume Based grids, but halted prematurely

« All Volume Based grids finished running the full time period of 26 years

* Volume Based grids could run much faster

Seismic Depth Conversion Uncertainty Uncertainty scenario results
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Uncertainty Estimation
o Seismic depth-conversion uncertainty affects bulk rock volume
estimations
 Monte Carlo Simulation run using averages from Volume Based
Model and Structural Gridding approach
e Purely statistical, no deterministic results
o 125 deterministic static model scenario builds using Corner Point

Gridding approach
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[ Stochastic Uncertainty Results ]

Conclusions

Corner Point Gridding Approach

e Generates geologically accurate fault model, has distorted grid pattern

e Dynamic modeling algorithms have difficulty working with distorted grids

e Multiple model scenarios could be built rapidly, ideal for uncertainty

guantification

N

reservoir simulation

e Uses a stair-step model, which is not geologically representative, but easy to work

with during dynamic modeling

7

making it unfit for uncertainty estimation

Volume Based Modeling Approach

e Perfectly orthogonal static model via structural gridding algorithm, ideal for

e Time consuming to update the volume based model section of the process,
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