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Abstract

This is a study and workflow that was applied to a mature field in Eastern basin of Ecuador, with the objective or increasing the reserves and production
and recovery factors. To increase production in this mature field, modern techniques of characterization were implemented. Refining the calculation of
the OOIP using static and dynamic models and understanding the key factors affecting production performance and fluid flow in the reservoir, it was
possible to find more oil reserves in the reservoir, define potential drilling areas and design a new development plan of the field.
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The sedimentological analysis was done from a combination of core data, log data, and formation. This lowers the porosity and the capacity that the marine Hollin

detailed geology from the area. The sedimentological structures were key to re-define the
different intervals for the Hollin. Before this study, the basin was divided into two sections
(upper and lower Hollin reservoirs). After this study, we were able to define three
environments.

pore throat, and therefore the reservoir

quality on the rock. When creating the facies 3D model a VPC is created for each well with facies interpreted. The multiple VPC curves

are interpolated into a vertical proportion matrix. This matrix is used later as volume trend (Facies probability

; Volume) in the facies simulation in combination with the Variograms.
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Rl Al et e L I — e integrated this data with a Winland plot and five rock types were identified for each interval; pogsgr?'e to ge:etCt frorr; an mternall_lltt)_rary %f ?ep\?VS“'fOﬂa' ef'c'jV][LQnmenli;f’l tha} will guide the Vé!”?Q{ﬁm
glauconitic sandstones = = one considered seal and four considered reservoirs. The resulting rock types defined in this ﬁ1nod ele model to create more reafistic models. Ve followed this workfiow for every reservoir in the

analysis were used to populate the petrophysical properties in the static model.

Perpendicular cross-section NE-SO This workflow was followed for every reservoir on the model.
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Sedimentological model average maps of the predominant environmental facies: The goal of the geocelular model was the volumetric calculation and the dynamic simulation. 2 L -
The grid was oriented along the main direction of sedimentation, based on the paleo-current analysis Depositional Environment Library o gt
. ; " ) L . ) The rock type was tied to the petrophysical model, so each rock type has a porosity range. The Final model for the Marine Hollin Interval
T.he mdin !lthglogles e gl?ucoh't'c sandsiones We defined three sub-facies in the tidal Hollin: porosity model was conditioned to the facies model. This allows a more predictive model. B _ _ _ _ _ o
(fine- to mid-size grains) with thick layers of cross channels/sand bars (yellow), sand flats (orange), The STOIIP calculation was done for P1, P2, P3 case scenarios. There was an increment in the area In a depositional environment library (available in DSG software), we can define the existing
stratification. We defined two facies in the marine and mud flat (grey). of the reservoir as defined in the most recent seismic interpretation. This interpretation combined the relationships between the facies, transitions, and truncations. We used the facies model for
Hollin: sandbar crest (light green) and sandbar available 2D and 3D seismic in the area. The 3D was not available before in previous models every interval, combining the sedimentological maps from the sedimentological studies, the
slope (dark green). P1 =500 m, proven reserves (official STOIIP) vertical proportion maps, and the library of depositional environments. We also used the
P2 =2 km, likely reserves variograms analysis to define the extension, width and direction of the different lithologies.

P3 = Possible reserves. Calculated using the OWC and the structural spill point
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We scaled the simulation grid at a 2:1 ratio in the vertical direction to reduce the simulation time. The
properties of the fluid come from validated PVT analysis (the main properties are in the table above).
To calibrate the pressure in the reservoir produced by the bottom water drive, it was necessary to
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production by contacting reserves by drilling wells. Other opportunities were identified using
the dynamic model of 3D Nexus View. Two different areas were identified: a lateral fingering,

3D FACIES MODEL
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3D FACIES MODEL * In the LGA-13 well a saturation log was taken recently. In image A, a lateral variation of facies around the wells is
shown; in image B we see a variation of WOC around 40-60 feet . Image C, the saturation log shows bypass oil in the

The resulting map for the Fluvial Hollin different intervals which matches with the simulation model; and also strong-stratigraphic component of the well

the same steps were followed In this study, we used a new methodology of opportunity index maps, that were key to

identify potential drilling areas. We used previous net sand, bubble oil and water-cut maps
to plan well locations. These maps gather static and dynamic variables and were created
for the tidal and fluvial intervals by Earth Modeling and Nexus. White and green colors
indicate the best rock properties and high saturation of moveable oil. Comparing the two
Hollin maps above, we can see that the main target is tidal, displaying more potential with
two potential areas: one north and one south. This is considered the sweet spot and

The primary changes included:
Sensitivity of WOC
Adjusted aquifer properties
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i s R Adjustment of 98% in ol and defines a new development plan for this field. In the fluvial interval, there is low expectation
Adjustment with Corey correlation exponents - water production because of early breakthrough of water.
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—Liquid Production — pressure * The existing diagenesis differential between the Marine Hollin and the fluvial and Tidal
§ - @ Liquid Production Historic ® Pressure Historic Nexus® . . . . .
= Petrophysical model = Uncertainty model Hollin intervals, affect the textural characteristics of the rock and the flow-storage capacity

ratio.

Adjustments to obtain a historic matching « There are 3 types of rocks for marine Hollin, and 5 for the tidal and fluvial Hollin

After running multiple realizations of the facies models. Multiple realizations for petrophysical Sensitivity to OWC.

distributions of the RT from the petrophysical analysis (conditioned to the facies). The volumetrics * Adjustment of the properties of the aquier. " The total recovery factor was 17%, but could be improved using new technology and
calculation and the uncertainty were calculated from the multiple realizations + Sensitivity to the Corey exponents in permeability relative to water. applying a new exploitation plan to more than 25%. With the design of new development
: + Sensitivity to vertical permeability between 0.1 and 0.2. plan
+ Seals or barriers were identified by the geological interpretation.
- Match between WORKOVER and production history. An adjustment of oil and water production of 98% is shown, also the same The synergy of a correct interpretation of the field using an innovative reservoir
adjustment for the liquid production. This adjustment was successful obtained because of the initial separation in Hollin formation characterization met the expectations and provided new opportunities to increase
between three intervals: fluvial, tidal and marine. production in a mature field.

+ This model is capable of representing fluid movement and water breakthrough in wells.
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