Timing and Mechanism of Calcites in Fractures of Middle Ordovician of Northern Tarim Basin, Northwest China

Zhanfeng Qiao1,2,3, Anjiang Shen2,3, Shaonan Zhang1, Anping Hu2,3, and Jianxin Zhao4

Search and Discovery Article #30629 (2019)**
Posted September 16, 2019

*Adapted from poster presentation given at 2019 AAPG Annual Convention and Exhibition, San Antonio, Texas, May 19-22, 2019
**Datapages © 2019 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/30629Qiao2019

1State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China (qiaozf_hz@petrochina.com.cn)
2PetroChina Hangzhou Research Institute of Geology, Hangzhou, China
3CNPC Key Laboratory of Carbonate Reservoir, Hangzhou, China
4Department of Earth Sciences, University of Queensland, Queensland, Australia

Abstract

Absolute radiometric dating has huge potential to better understand diagenetic processes and evolution of carbonate platforms and has been applied to young strata successfully. Furthermore, recent development of U-Pb dating by laser ablation applied directly on thin sections makes it possible to date older carbonates. Middle Ordovician in the Northern Tarim Basin experienced multiple stages of tectonic movement and related karstification, and six types of vugs and fractures were recognized, including vugs, horizontal fractures, tectonic fractures, dissolved fractures, irregular fractures, and faults, filled with calcite partially or completely. Based on the analysis of petrographic sequences of the calcites, laser-based U-Pb dating was conducted, and additionally C, O, and Sr isotopes and REE were analyzed to verify the results of dating and corresponding diagenetic environment.

U-Pb dating revealed that calcite in vugs formed at 344 ±20 Ma during early Hercynian; magacalcite in fault precipitated during 316.8 to 251.8 Ma of Late Hercynian; calcite in irregular fractures formed at 118 ±26 Ma of Yanshanian, perfectly corresponding to the three tectonic episodes exerted important influences on the region. The diagenetic environments revealed by conventional C, O, Sr and REE analysis are consistent with the corresponding geological settings. Calcite in vugs, showing relatively positive C and negative O, similar 87Sr/86Sr to host rock, and obviously negative Ce anomalies, interpreted as the products of meteoric karstification related to the uplift of Tabei Uplift during Early Hercynian. The calcites in faults and tectonic fractures (including irregular fractures) showing obviously negative O, 87Sr/86Sr similar to seawater values of the Cambrian, and REE pattern different from either meteoric or hydrothermal environments, revealing the features of burial formation fluids probably related to the activities of strike-slip faults induced by Late Hercynian and Yanshanian tectonic movements. The consistence of petrographic sequence, dating results, diagenetic environments, and fluids properties revealed the reliability of laser-based U-Pb dating on the Paleozoic calcite. Furthermore, considering the close relationship of magacalcite and tectonic fractures to reservoirs, it is proposed that the main reservoirs were formed by strike-slip faults during Late Hercynian and probably are just empty spaces in the fault and fractures, instead of previously thought karstification related to unconformity.
Timing and Mechanism of Calcites in Fractures of Middle Ordovician of Northern Tarim Basin, NW China

Zhanfeng Qiao1,2,3, Anjiang Shen2, Shaonian Zhang1, Anping Hu2,3, Jianxin Zhao8

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China; 2. Petrochina Hangzhou Research Institute of Geology, Hangzhou, 310023, China; 3. CNPC Key Laboratory of Carbonate Reservoir, Hangzhou, 310023, China; 4. Radiogenic Isotope Facility, Centre for Microscopy and Microanalysis, The University of Queensland, Queensland 4072, Australia.

Email: qiaofz_hz@petrochina.com.cn

1. Introduction

Absolute radiometric dating could provide the valuable information to better understand diagenetic processes and evolution of carbonate platforms (Godeau et al. 2018). U-Pb dating of calcites has been applied to nearly the full range of the geologic time scale (Rastboy and Cole, 2009), especially in geologic strata (Gray et al. 2007, 2008; Godeau et al. 2019). However, because of either low uranium or high common lead content, or because of the impossibility of microsampling a single (monogeneration) diagenetic cement of interest, it is very difficult to realize the U-Pb dating of calcite by using conventional solution method. Recent development of U-Pb dating of carbonates by laser ablation – inductively coupled plasma – mass spectroscopy (U-PbICP-MS) applied directly on thin sections or slabs opened a wealth of possibilities with which to date calcite-cemented fossils (Li et al. 2014), calcite-filled veins (Coogan et al. 2017; Roberts and Walker, 2016; Nuriel et al. 2017), and calcite cement in microporous carbonate (Godeau et al. 2018), because it allows the possibility to capture a more extended range of U-Pb variability (thereby providing a greater spread of U/Pb ratios to geologists’ disposal), as well as rapid data acquisition and large sample throughput.

Importantly, tectonic uplift and paleosols (Methner et al., 2016) or calcite cement in microporous carbonate (Godeau et al., 2018), because it offers closely related to bit drops and/or loss of circulation, within 20 m range of middle Ordovician ocean.

2. Geological settings

In this study, laser-based U-Pb dating, established in CNPC KEY LABORATORY OF CARBONATE RESERVOIR, has been used to determine the diagenetic history and the reservoir-forming date.

3. Calcites and their geochemical features

(a) calcite in vug
(b) calcite in interbed
(c) calcite in high angle structure fracture
(d) calcite in high angle dissolved fracture
(e) calcite in irregular fractures
(f) calcite in irregular fractures
(g) calcite accompanying barite

5. Results and Conclusions

Although four stages of modification have been recognized, including the meteoric dissolution during the end of deposition and early Hercynian, and fault-related modification during late Hercynian and Yanshanian.

Fault related modification probably made the biggest contribution to the reservoir spaces.