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Abstract

Inherent reservoirs properties are dependent on reservoir genesis or depositional processes, these properties are modified overtime, hence
limited understanding of the geology of a hydrocarbon reservoir is a great deficit in recovery efficiency, adequate knowledge of reservoir
architecture is key in placement of injector wells, pressure maintenance and secondary recovery and in turn contribute to reserve growths. The
main objection of this study is to determine the impact of depositional environment and the primary facies architecture on reservoir
performance. All the major reservoir intervals in the key fields on the Norwegian continental shelf have been classified within the SAFARI
data standard. SAFARI uses a systematic hierarchical schema to describe depositional environments, basin types, paleoclimate architectural
elements. Parameters such as recovery factor, maximum oil well rate, depletion rate and other 40 variables were recorded, and a unique
database was built of all the reservoirs classified into nine depositional sub-environments. All these parameters were analysed using
multivariate statistics to find out the relative importance of these parameters Stratigraphically dependent variables porosity, permeability, depth
was found to control performance of the reservoir, parameters such as reservoir volume, well density, net to gross, temperature and trap
type/geometry contribute less to reservoir recovery. Reservoir performance varies for the three gross depositional environments, deep marine
has better performance followed by paralic/shallow marine then continental. Similarly, performance varies across the nine depositional sub-
environments, detailed evaluation of architectural elements of the reservoirs showed intra reservoir sedimentological heterogeneities exists in
reservoirs with low recovery. Maximum well rate however is better continental reservoirs compared to deep marine and paralic/shallow marine
which is inconsistent with recovery making it very difficult for huge discovered oil to be extracted.
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What controls production ?

Diagenesis Well spacing Fluids density
Viscosity  Porosity Permeability
Reservoir depth
Depositional environment Temperature Pressure
Structural complexity Faults density well spacing
Pay area Reservoir thickness net to gross

Production mechanism water saturation



Previous Studies

e Tyler and Finley (1991) on the study of oil fields in Texas concludes that
drive mechanism and depositional environment are related to recovery
efficiency.

* Larue and Yue (2003) analysed different dataset of deep water
environments reservoirs and conclude that average permeability and API
gravity obviously influences recovery.

 Skorstad et al (2008) studied the production behavior of a synthetically
generated models of depositional environments, and analyze the effects of
structural, stratigraphic and well controls on production, they conclude
that sedimentological and fault-related parameters are important for
describing uncertainty in recovery factor.

* None considered the reservoir depth, depth affects a lot of reservoir
properties.
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Aim and Objectives

* The goal of this project is to examine the stratigraphic controls on
reservoir performance. It is also expected to achieve the following;

Classify all fields in the Norwegian continental shelf using the SAFARI Schema

Investigate and compare production respond of the various GDE in the NCS

Relative importance of primary depositional facies on production

Other major controls on fields’ performance apart from sedimentary environment.



Detailed Reservoir Depositional

Properties/Description
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SAFARI Classification Schema
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Database/Methods
e

Reservoir 1
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Database

Reservoir Properties

Net:gross 0.46
Porosity (%) 21.2
Permeability (mD) 5.3
Fluid saturation (%) 53

Structural Geology

Trap type
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Results
Principal Component Analysis

* Dimensionality reduction method
* Reveals hidden data structures
* Exploratory data analysis method (extract information)

* Dataset is reduced into number of principal components (PC)
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Scree Plot of Principal Components
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Eigenvalue 5.087 3.1327 1.9452 1.489 1.3121 0.9013 0.6937 0.6082 0.4893 0.4020
Proportion 0.299 0.184 0.114  0.087 0.077 0.053 0.041 0.036 0.029 0.024

Cumulative 0.299 0.483 0.598 0.685 0.762 0.815  0.856 0.892 0.920 0.944

- PC11 PC12 PC13 PC14 PC15 PC16 PC17

Eigenvalue 0.3368 0.2262 0.1517 0.1095 0.0610 0.0417 0.0262
Proportion 0.020 0.013 0.009 0.006 0.004 0.002 0.002

Cumulative 0.964 0.977 0.986 0.992 0.996 0.998 1.000



First seven Principal Component

Variable

Gross Dep.Environment

Reservoir Depth (m)

Avg. Porosity (%)

Avg. Permeability (mD)

Initial Pressure (bar)

Initial Temperature (0C)

Fault Compartments

API (0)

Pay Area (km2)

Bulk Rock Volume (108 m3)

Water Saturation (%)
Production Strategy

Trap Type

Diagenetic impact

Stratigraphic Heterogeneity

well Spacing (km2/well)

OIP (Mill. Sm3)
Recovery Factor (%)




Second Component

Most important parameters
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First Component

1) Reservoir Depth (PC1)

9) Original oil in place (PC2)

2) Average Porosity (PC1)

10) Pay area (PC2, PC3)

3) Initial Pressure (PC1)

11) Production Strategy (PC3)

4) Initial Temperature (PC1)

12) Fault compartment (PC3)

5) Average Permeability (PC1)

13) Stratigraphic Heterogeneity (PC4)

6) Gross Depositional Environment (PC2)

14) Diagenetic impact (PC7)

7) Trap Type (PC2)

8) Reservoir Bulk Rock Volume (PC2, PC3)




Fermeability (mD)

Exploring the importance of depth its control
on permeability

Permeability atnless than 2.5km
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Forosity

450

Exploring the importance of depth its control
on Porosity

Porosity at less than 2.5km
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Recovery as a function of dominant depositional
sub-environments

Reservoirs produced by pressure depletion Reservoirs produced by water injection
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Stratigraphic Heterogeneity Scale
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(modified after Tyler and Finley, 1999)

1 = Alvheim, Balder, Blane, Cod, Frigg, Grane, Glitne, Hemdal, Jotun, Oselvar, Volund

2 = Brage, Fram, Lille Frigg, Oseberg Sor, Skirne, Heidrun, Gullfaks sor, Ula Vale, Troll,
Svalin

3 = Oseberg, Trym, Volve, Huldra, Mikkel

4 = Tune, Snore

5 = Gulifaks Sor, Gullfaks

6 = Embla, Froy

7 = Gungne, Sigyn

8 = Brynhild, Gaupe, Gjoa, Mime, Yme



Recovery against stratigraphic heterogeneity




Conclusion

* Principal component analysis (PCA) reveals that gross depositional
environment and sedimentological related parameters dominate the first
four principal components.

* Fluid properties parameters, APl density and water saturation are
unexpectedly among the less important parameters.

* Delta front deposit, wave-dominated shoreface deposit, tidal non-delta
reservoirs, alluvial multistorey stacked deposits and deep marine
reservoirs have strong oil recovery. Whereas;

» Offshore/transition zone reservoirs and alluvial: fluvial meandering
channel deposits have weak oil recovery.
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