What Influences Production from the Wall Creek and Turner Reservoirs, Powder River Basin, Wyoming?*

Rachel N. Toner¹

Search and Discovery Article #11277 (2019)**
Posted December 16, 2019

*Adapted from oral presentation given at 2019 AAPG Rocky Mountain Section Meeting, Cheyenne, Wyoming, September 15-18, 2019
**Datapages © 2019 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/11277Toner2019

¹Wyoming State Geological Survey, Laramie, Wyoming (rachel.toner@wyo.gov)

Abstract

The Upper Cretaceous Wall Creek Sandstone Member of the Frontier Formation and the Turner Sandy Member of the Carlile Shale are one of the most prolific unconventional plays in the Powder River Basin (PRB) of Wyoming. From 2017 through 2018, the Wall Creek and Turner reservoirs accounted for 39 percent of the PRB’s and 21 percent of Wyoming’s oil production. The Turner was also the PRB’s highest non-coal gas-producing reservoir during this time period, accounting for 23 percent of all natural gas produced from the basin.

This study evaluated horizontal well drilling and completion practices, in addition to reservoir geology, to determine what factors influence production from the PRB Wall Creek and Turner reservoirs. Wall Creek-Turner oil and gas production is graphically compared to the producing interval lengths and lateral orientations of horizontal wells, completion techniques such as hydraulic fracturing (frac) stages, slurry and proppant volumes, and operator specific trends over time. Interpolated surfaces and contours are used to spatially compare basin-wide production trends to reservoir characteristics, including formation depth, thickness, pressure, temperature, regional structural features, and hydrocarbon compositions such as crude oil API gravity, gas-oil ratios, and gas-fraction ratios. The graphical, spatial, and statistical comparisons of these variables suggest that hydrocarbon production from the complex PRB Wall Creek-Turner reservoir system is more influenced by geology than by horizontal well completion techniques.
Selected References


What influences production from the Wall Creek and Turner Sandstone Reservoirs, Powder River Basin, Wyoming?

Rachel N. Toner
Wall Creek-Turner Sandstones

- **Wall Creek Sandstone**
  - western PRB
  - member of Frontier Fm
- **Turner Sandstone**
  - member of Carlile Fm
  - eastern PRB
- **Time-equivalents**
  (late Turonian ~90Ma)
- **Turner distal extension of Wall Creek’s deltaic depositional environment**

*after Lynds and Slattery, 2017*
Wall Creek-Turner reservoirs

- Primary hydrocarbon targets in PRB
  - 2017–2018: 39% PRB oil (21% state oil) and 29% PRB gas
- Since 2014, Turner has been one of top two oil-producing reservoirs in state
- What influences production?
  - drilling/completion techniques?
  - geology?
Wall Creek–Turner wells
Wall Creek–Turner horizontal wells

- Producing interval length
  ➢ longer lengths ≠ increased production

Wall Creek

Turner

Wall Creek First 18 Months

18 Months Oil (bbl)

Producing Interval (ft)

Wall Creek First 18 Months

18 Months Gas (Mcf)

Producing Interval (ft)

Turner First 18 Months

18 Months Oil (bbl)

Producing Interval (ft)

Turner First 18 Months

18 Months Gas (Mcf)

Producing Interval (ft)
Wall Creek–Turner horizontal wells

• Lateral orientation
  ➢ Mostly N–S, but variable success
Wall Creek–Turner horizontal wells
• Lateral orientation
  ➢ Some E–W Turner wells do just as well
Wall Creek–Turner horizontal wells

- # of frac stages
Wall Creek–Turner horizontal wells

- proppant amount
Wall Creek–Turner horizontal wells

- operators use standard formula
- larger completions ≠ increased production

Wall Creek

Turner
What about geology?

- depth
- thickness
- gas-oil ratio
- crude oil initial API gravity
- pressure
- temperature
Wall Creek-Turner 18 months oil (bbl)
Wall Creek-Turner 18 months gas (Mcf)

Horizontal well
18 months
gas production
(Mcf)

Wall Creek
Turner

Casper
Douglas
Lusk
Wall Creek-Turner depth (ft, MSL)
Wall Creek-Turner thickness (ft)
Reservoir depth and thickness

➢ Highest unconventional oil production is located in the Wall Creek in the deepest portion of reservoir

➢ Highest unconventional gas production concentrated in the shallower Turner and in a thinner section

➢ Best production from targeting hydrocarbon-rich zones within the reservoir rather than overall reservoir thickness
Wall Creek-Turner gas-oil ratio (ft$^3$/bbl)

Gas-oil ratio (ft$^3$/bbl)

- Red: 250,000 ft$^3$/bbl
- Green: 25 ft$^3$/bbl
Gas-oil ratio

➢ highest GOR areas spatially bound the high gas production areas and generally skirt high oil production areas

➢ may indicate additional, as-yet undeveloped areas where similarly high gas production may be encountered
Wall Creek-Turner initial API gravity (°)

Initial API gravity (degrees, °)

- 70
- 45
- 30
Initial API gravity

- Oil produced from the Wall Creek-Turner reservoir is consistently light and marketable.

- API gravities >45° correlate to high gas production area
  - gas-condensate?
Wall Creek-Turner pressure (psi/ft)

Pressure gradient (psi/ft)

- 1.17
- overpressured
- 0.002

Diagram showing pressure distribution with color coding for pressure gradient.
Reservoir pressure

- Pressure test surveys confirm gas-condensate “sub-reservoir” in southern Campbell County

- Overpressured areas of reservoir not yet targeted by/not an influence on horizontal well production

- But operators have been able to produce significant oil and gas volumes from the Wall Creek and Turner under normally and underpressured reservoir conditions.
Wall Creek-Turner temperature (°F)
Reservoir temperature

- Temperature correlates strongly to production, especially natural gas

- Nearly all oil/gas production at temps >200°

- Temps > 225° outline gas-condensate reservoir
  - Thermal analyses may be useful in identifying other potential gas-condensate sub-reservoirs
PRB Wall Creek–Turner is a complex reservoir system

Geology has more of an influence on production success than well completions*

*at this time!

All data available on WSGS website, including an online map (http://sales.wsgs.wyo.gov/influences-on-oil-and-natural-gas-production-from-the-wall-creek-and-turner-sandstone-reservoirs-powder-river-basin-wyoming-2019/)