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Abstract

The Eocene Lower Barmer Hill (LBH) Formation is the major regional source rock in the Barmer Basin rift, located in Rajasthan, India. Thick
sections of organic-rich black shales reaching 400 meters thickness with TOC up to 14 wt. %, were deposited during a period of widespread
basin deepening. Type 1 oil prone kerogens dominate the north, with mixed type 1 and Il kerogens in the south. Thermal maturity varies
across the basin, from early oil in the north to dry gas in the south.

Extensive Rock Eval pyrolysis and source rock kinetic databases were combined with petrophysical analysis to determine log-based porosity
and saturations and productive potential. Basin modeling using Trinity software provided probabilistic ranges of generated and expelled
hydrocarbons to determine storage capacity. The modeled oil window storage capacity varies between 6 to 13 mmstb/km?, comparable to the
values observed in Eagle Ford Shale and Bakken Shale plays.

Excess pore pressure was modeled using the kinetics of kerogen-to-oil conversion. These pressure-gradient maps, along with oil properties
(viscosity and oil mass fractions) derived from the geochemical model, are used to compute the producibility index. Composited storage
capacity and the producibility index maps are high-graded to potential pilot areas. Work is ongoing to understand the rapid syn-rift facies
variations of interbedded brittle zones such as silty porcellanites or thin turbidites, which make this play considerably different from established
trends such as the Eagle Ford or Bakken Shales. Testing these concepts will be an important step in unlocking future unconventional potential
in other rift basins.
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Petroleum System Model Workflow (after Naidu et. al. 2017)
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Petrophysical Workflow
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Gross Depositional Environment (GDE) Workflow
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