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Abstract

In the Cenomanian-Turonian Woodbine and Eagle Ford Groups in the Brazos Basin, XRF chemostratigraphy highlights significant mudstone
chemical heterogeneities that are often difficult to observe or quantify at the macroscale. Several key elements, Ca, Si, Mo, Mn, and Ni, were
correlated to depositional conditions and used in a hierarchical cluster analysis to characterize five chemofacies across ten cores in the
Woodbine and Eagle Ford groups: (1) argillaceous, OM-poor; (2) transitional, OM-poor; (3) transitional, OM-moderate; (4) calcareous, OM-
rich; and (5) calcareous, OM-moderate. Characterizations of organic matter richness, mineralogy, and environmental conditions of deposition
were established by correlations between key element abundances, TOC measurements, XRD measurements, and petrographic observations of
lithologic composition, bioturbation, and sedimentary textures. Combined observation redox-sensitive trace element enrichment and
petrographically observed textures indicate that all chemofacies were deposited in an intra-shelf basin above storm-wave base. The most
organic-rich chemofacies was deposited on a dysoxic (not anoxic) distal shelf. Mudstone organic matter enrichment is driven dominantly by the
minimization of siliciclastic dilution and secondarily enhanced by oxygen-restriction.

Regional correlations of chemofacies within a sequence stratigraphic framework developed from previous outcrop and subsurface work
indicates a clear relationship between interpreted stratigraphy and chemofacies deposition. Generally, the highstand sequence sets of the
Woodbine Group and Upper Eagle Ford Formation are dominated by clay-rich, OM-lean, siliciclastic dilution and contain poor quality source
rock. Conversely, the transgressive sequence set of the Lower Eagle Ford Formation is dominated by OM-rich pelagic carbonate accumulation
and contains excellent quality source rock.
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ABSTRACT

The XRF chemostratigraphy of the Cenomanian-Turonian Woodbine and Eagle
Ford Groups in the Brazos Basin was used to identify distinct chemofacies within a
regionally  correlative sequence  stratigraphic  framework. Chemostratigraphic
correlations of high-resolution XRF measurements collected from ten cored wells
highlight significant vertical and lateral chemical heterogeneities in these mudstones.
Several key elements —Ca, Si, Mo, Mn, and Ni— were correlated to depositional
conditions and used in a hierarchical cluster analysis to characterize five chemofacies
throughout the Woodbine and Eagle Ford Groups: 11) argillaceous, OM-poor; (2
transitional, OM-poor; (3) transitional, OM-moderate; &gﬂcalcareous, OM-rich; and (5
calcareous, OM-moderate. Characterizations of -richness, mineralogy, and
environmental conditions of deposition were established by correlations between key
element abundances, TOC measurements, XRD measurements, and petroPrapmc
observations of lithologic composition, bioturbation, and sedimentary textures. Although
significantly enriched in redox-sensitive indicators, petrographic observations indicate
that the most organic-rich facies was deposited within storm-wave base in a dysoxic
environment with intermittent bottom-water current energy and bioturbation. Organic
matter enrichment is achieved primarily through the minimization of siliciclastic dilution,

Five temporally and chemically-distinct sequence stratigraphic units were defined
_t% key element variations and correlated to previously outcrop and subsurface studies.
e Woodbine Group forms an overall highstand sequence set, is dominated by
argillaceous, OM(-foor chemofacies deposition and contains fair quality source rock.
The Eagle Ford rouE is subdivided into five sequences. The Lower Member of the
Lower Eagle Ford ( M-LEFR is dominated by calcareous, OM-rich chemofacies
deposition and contains excellent unaIity source rock. The Upper Member of the Lower
Eagle Ford Formation (UM-LEF) is dominated by transitional, OM-moderate
chemofacies deposition_and contains fair-to-good quality source rock. The Lower
Member of the Upper Eagle Ford (LM-UEF) is dominated by transitional, OM-poor
chemofacies deposition and contains poor quality source rock. Together the LM-LEF,
UM-LEF, and LM-UEF Formations makeup a transgressive sequence set. The Middle
and Upper Members of the Upper Eagle Ford Formation (MM-UEF and UM-UEF) form
an overall highstand sequence set, are dominated by argillaceous-OM poor
chemofacies deposition, and contain poor quality source rock.

HIGH-RESOLUTION XRF AQUISITION

Energy dispersive x-ray fluorescence (ED-XRF) data were collected using two
Bruker Tracer 5i handheld spectrometers on all ten cores. Data were collected every
1.2” (3.0 cm) on Core A and every 2.4” (6.0 cm) on the remaining cores (Cores B
through J). Significant testing (Figure 4) was conducted on Core F to establish the
following collection parameters for this study.
Three elements were poorly detected by the handheld: Cu, Ba, and U; these data
were therefore omitted from the study. Significantly high concentrations of Ca (>25%)

interfere with the detection of many trace elements (e.g. Ni, V, Mo, Cr, Zn). Therefore,
any data showing this interference was removed when portraying cross-plot
relationships of these trace elements with other data. At any point where a plug was
extracted for XRD mineralogy or TOC data analysis, care was taken to collect an XRF
measurement as close as possible to the plug hole.

not anoxia.
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Figure 4. (Above Right) Testing conducted at selected depths to determine the most optimal procedures of use for the Bruker Tracer 5i handheld x-ray spectrometers. (A)
Testing conducted for various scanning time intervals. (B) Testing conducted between the two identically-calibrated handheld spectrometers, A and B, used in this study. (C)
Testing conducting with and without the metal quard plate that comes pre-installed on the spectrometers and can be unscrewed and removed (see Figure 5). (D) Testing
conducted between unwashed, lightly washed, and thoroughly washed samples.

SPOTFIRE CLUSTER HIERARCHICAL ANALYSIS

SPOTFIRE® DENDOGRAM TO DELINEATE CHEMOFACIES
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Figure 6. Dendogram visualization tree produced in TIBCO Spotfire® application used to sub-divide all elemental data across all cores into five chemofacies. Each column in the
figure represents a column of elemental data in the spreadsheet of data for this study. Each row in represents a row of data in the spreadsheet tagged with one depth and one
core name. The rows are not organized by depth or core; they are clustered based on the similarity of the elemental data in each column. This effectively allows the grouping of
elementally-similar XRF data points across all cores.

PETROGRAPHIC DESCRIPTIONS

Table 3. Five classifications for common sedimentary textures observed petrographically in this study
and corresponding interpretations for depositional energy.

Table 2. Bioturbation index from Lazar et al. (2015) used to
characterize sedimentological observations made in thin sections.
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Bioturbation Observed Features Interpretation Sediment Observed Features Interpretation
Index Energy Index
0 No burrows visible; primary sedimentary structures preserved  Not bioturbated 0 No scour surfaces, no mud rip-up intraclasts, no ripples, no graded laminations Lowest energy, no evidence of storms or currents
1 Beds continuous, buta few burrows Weakly bioturbated 1 Scour surfaces, mud rip-up intraclasts Low energy, little evidence of currents and storms
2 Beds discontinuous, some burrows Sparsely bioturbated 2 Scour surfaces, mud rip-up intraclasts, fragmented skeletal grains, ripples Moderate energy, moderate evidence of currents and storms
3 Remnant bedding, burrows common Mostly bioturbated 3 3?332 (SiuprIf:rﬁS?I Er]nnl:ﬂ] irxltil)ol#s) intraclasts, fragmented skeletal grains, ripples, High energy, moderate evidence of currents, waves, and storms
4 Very little bed continuity, burrows abundant Strongly bioturbated S oun i [
' cour surfaces, mud rip-up intraclasts, fragmented skeletal grains, ripples, ; fy ;
5 No remnant bedding, fully homogenized Churned 4 graded planar laminations with medium to course size quartz grains Highest energy, signifcant evidence of currents, waves, and storms




STRATIGRAPHIC CHARACTERIZATION CONCLUSIONS

GROSS AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE Mudstone deposition is complex even in the simplest of shale formations and chemofacies was deposited in, at most, intermittently anoxic depositional conditions. In
INTERVAL CALCIUM QUARTZ & TOTAL CLAY (TC)|| EF NICKEL MANGANESE || MOLYBDENUM TOC depends on a variety of depositional processes. Often, variability is only discernible  fact, all chemofacies are interpreted to be deposited an intra-shelf basin above
ISOPACH FELDSPAR (QF) || from ETM Model on the micro-scale and requires a higher-resolution analysis, especially when storm-wave-base.
from ETM Model (ANOXIO)  (OXYGENATED) | | (OXYGENATED)  (ANOXIQ) utilizg)ng corels. )éRF _lc_jgté\ is (ijn;)épDensive, slimplt\eNtr(]) collect t;;lcrossdmany corer?, alrlld Five chemicefllly-distingt temporlal packalgisﬁarehdefined téy variﬁtions in dominanrtly
can be correlated to an mineralogy. When corroborated petrographically,  occurring chemofacies and major elemental shifts that coincide with major stratigraphic
A 0 FT_100110 WI% 300 W% 3.0 0 Wl 8502 1.0 2.81( 100 PPM 500 |/ 0 PPM 50 0 WT% 5 elemental proxies for mineralogy and organic-matter richness provide the basis for  surfaces proposed by Donovan et al. (2018, 2019). The Woodbine Group, an overall
N II- :i- I 1| D]]D:- interpretation of chemostratigraphic boundaries and changes in regional highstand sequence set, is dominated by argillaceous, OM-poor chemofacies
— — T depositional processes occurring within a shale basin. In the Woodbine and Eagle  deposition, responding to siliciclastic input from the northwesterly-sourced Woodbine
[ 5 X 2] Ford Groups in the Brazos Basin, several key elements are identified and correlated  Delta. Deposition occurred in oxygenated conditions with moderate OM productivity
LLd 1 to depositional conditions: (1) Ca indicates carbonate input, which is dominated by  resulting in fair-to-poor source rock quality. The erosional unconformity between the
— Not Enough OM-rich planktonic fecal pellet deposition; (2) Si + Ti + Al + K indicates OM-lean  Woodbine and Eagle Ford groups is geochemically documented by the abrupt
I terrigenous clay; (3) Mo and Mn are inverse indicators of redox conditions during  transition from argillaceous, OM-poor to calcareous, OM-rich chemofacies deposition.
E Data Available deposition—high Mo and low Mn concentrations are generally favorable for OM  The LM-LEF, UM-LEF, and LM-UEF Formations comprise an overall transgressive
preservation and enrichment; and (4) Ni records paleoproductivity and is favorable  sequence set and contain the least amounts of OM-lean terrigenous clay, which dilute
E for OM deposition and enrichment. the OM-rich, planktonic fecal pellet background suspension settling occurring on the
Five statistically-clustered chemofacies were identified from elemental analysis  shelf at this time. The LM-LEF Formation is dominated by calcareous, OM-rich
throughout the Woodbine and Eagle Ford Groups: (1) argillaceous, OM-poor; (2) chemofacies deposition on a dysoxic shelf, resulting in excellent-quality source rock.
el transitional, OM-poor; (3) transitional, OM-moderate; (4) calcareous, OM-rich; and The UM-LEF Formation is dominated by calcareous, OM-moderate chemofacies
Ll Not Enough (5) calcareous, OM-moderate. These chemofacies highlight the high-frequency  deposition on an oxygenated to dysoxic shelf, resulting in fair-quality source rock. The
o variability within an often macroscopically-homogeneous shale and have direct LM-UEF Formation is dominated by transitional, OM-poor chemofacies deposition on
N Data Available relationships with OM-richness. The argillaceous, OM-poor chemofacies represents  an oxygenated shelf, resulting in poor-quality source rock. The MM-UEF and UM-UEF
E the proximal facies with the most oxygenated, high-energy depositional conditions.  together comprise a highstand sequence set and are both dominated by argillaceous,
— | The calcareous, OM-rich chemofacies represents the most distal facies with the OM-poor chemofacies deposition, responding to siliciclastic input from the
least oxygenated, low-energy depositional conditions. Petrographic observations of  northeasterly-sourced Harris Delta. Deposition occurred on an oxygenated shelf with
Ll current and bioturbation indicators suggest that the most oxygen-restricted low OM-productivity resulting in poor-quality source rock.
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Figure 19. Sequence stratigraphic and paleogeographic depositional model for the Woodbine and Eagle Ford Groups within the East Texas and Brazos Basins.



