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Abstract

The Syn-rift succession encompasses the primary exploration target in the southern Pletmos Basin. Several fault-bounded
structural traps that contain gas accumulations have been discovered within this succession. Likewise, ubiquitous residual gas
shows have been encountered in most drilled wells. Yet, the impact of faults on fluid flow is poorly understood. Therefore, this
study aspires to predict, and where possible, quantify fault seal integrity and sealing capacities of some of the major prospect-
bounding faults. A multi-disciplinary research strategy was employed to fulfil the study objectives. Fault mapping and geo-
cellular modelling using geostatistical algorithms were undertaken to provide the basic geometric and structural input for more
advanced fault seal analysis applications. Juxtaposition analysis was carried out to identify zones with a high probability to seal
(or leak) and as the first-order tool for predicting fault seal potential. Threshold pressures, hydrocarbon column heights, cross-
fault permeability, and transmissibility were used to estimate the sealing capacities of the faults. In addition to juxtaposition and
customary fault-rock properties, the study also analyzed parameters that can be deemed to be representative of cross-fault fluid
flow (i.e. effective cross-fault permeability and transmissibility: ECFP and ECFT). Finally, modelling of the geo-history
facilitated the validation of the properties that underpinned fault seal analysis studies. The Ga-Q and proposed Ga-K prospects
along with their main bounding faults formed the foci of the fault seal analysis results. The analyzed faults showed excellent
initial sealing potential due to either favorable juxtaposition or shale gouge development. Nonetheless, predicted hydrocarbon
column heights and threshold pressures were low suggesting that the seal integrity of the analyzed faults is predisposed to
failure. In addition, high predicted fault permeability and transmissibility values signify the presence of open and permeable
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fracture networks within the fault zones. Thus, it is proposed that the faults are very likely to have leaked during hydrocarbon
migration and filling of traps resulting in empty or under-filled hydrocarbon reservoirs.
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Executive Summary

* 1000 km? 3D seismic survey acquired to cover the
Superior High (most prospective subsurface feature).

» Variety of frontier plays each with materially significant
upside potential identified;

» Proven: Fractured & sub-aerial quartzite Table
Mountain Fm. (Ordovician - Devonian Cape Super
Group) and draped sands on syn-rift structural
high.

> Unproven: Barremian basin floor fan and channel
(e.g. Sable, Oribi and Oryx)

- What is the problem?



Study Objectives

 To evaluate whether fault seal failure played a role in
the failed exploration efforts in the basin, and

» Explore the effects on the viability of the unproven Ga-
K prospect.

» Summary of workflow:

> Structural Interpretation
> Petrophysical Evaluation
> Geo-cellular Modelling

> Fault Seal Analysis




Overview

Pletmos Sub-basin

One of five sub-basins
situated in the Outeniqua
Basin.

Basin type: Intra-cratonic
rift basin.

EMBAYMENT

Sedimentary thickness: 7
km.

Water depths: Shallow;
southern boundary ~ at
the 200 m isobath.

Areal extent: 13 300 km?2.
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Geologic History
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Exploration History

{P Ga-H1

Proven petroleum system(s)

Main source rocks:

 Syn-rift Kimmeridgian lacustrine

mudstone. a_
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Summary of workflow covered by this study

Fault Properties

Fault
juxtaposition
Clay content
prediction
Threshold
pressure and
hydrocarbon
column height
Fault
permeability and
transmissibility
multipliers
Effective cross
fault
permeability and
Transmissibility

Dynamic Simulation

Methodology

Fault Seal Analysis

Conceptual Model Velocity Model and
Domain Conversion

Geo-cellular Modelling
Seismic Data WOI'kﬂOW

Well ‘Logsﬁ
Well Data Inter-well Data

Static Analysis

3D Parameter and Property Models

tructural Model
(fault definition and pillar

gridding)

(Horizon, layering
and zone definition)



» Depocentre bounded by e
northwest to southeast o A
striking fault systems.

 Only regional faults
incorporated into the
_basin model.
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Reservoir Propertles

e Main reservoir section
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~ — — - Ga-K closure

> Model predicts sufficient charge at Ga-A, Ga-Q and Ga-K
locations!
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Shale Gouge Ratio

oo [oaEE T 1.0 ° The SGR iS the
percentage of
shale or clay in the
slipped interval.

 SGR>0.3 > High
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Fault Permeability Prediction

e Based on estimated
fault clay content
variation.

e Permeability: 10 — 15
mbD.

 Permeable fracture
networks imply?




Seal Capacity Estimation

Column Height: (Bretan et al., 2003)
Elevation depth [m]
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Cross-Fault Flow Indicators

a ) ECFP [mD] b) ECFT [cP.m?/day/bar]
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Conclusions

Adequate charge suggested by extant literature.

Excellent initial sealing potential due to either;
> Favorable juxtaposition or,
> Shale gouge development.
Predicted hydrocarbon column heights and threshold
pressures were low;
> Seal integrity of the analysed faults was predisposed to
failure.

Likeliness of post-charge breach?



Recommendations

» Prospective commercial deposits may lie in;
> Fractured basement highs (below Horizon
D).
> Reservoir sands above 1At1 — Bredasdorp
Basin analogues??

Recommendations for future work:

» Dynamic simulation modelling incl. sensitivity
analyses.

» Integrated petroleum systems approach.
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“Although the precise role of faults has never
been systematically defined, much has been
written that touches on the subject. One thing is
certain: we need not try to avoid them.”

-Frederick G. Clapp (1929)
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