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Abstract

Appalachian Basin shale gas has now become a well known component of U.S. natural gas production. Indeed, as of 2015, Pennsylvania
accounted for 18% of domestic dry natural gas production, driven largely by the Devonian Marcellus Shale, and to a lesser extent, the
Ordovician Point Pleasant Limestone. While these two shale plays display similar production mechanisms, the conditions under which these
deposits accumulated were markedly different. Vertical chemostratigraphic profiles and pyrite morphology trends were developed on core
taken from both formations. The Marcellus exhibits enrichments in redox sensitive trace elements, a framboid population detailing abundant
small, <5 um framboids, with subordinate large framboids, and occasional bioturbation. These observations suggest that sediments
accumulated under dominantly anoxic to euxinic bottom waters that were occasionally subjected to periods of (dys)oxia. The high total organic
carbon content of the Marcellus is the result of increased preservation, due in part to favorable oxygen-depleted conditions, while concentration
was controlled by dilution from clastic influx. Conversely, the Point Pleasant comprises mudstones and marls largely devoid of redox sensitive
trace elements, with minimal pyrite, a paucity of iron, and a number of in situ shell bed horizons. These observations suggest the Point Pleasant
accumulated under oxic to dysoxic bottom water conditions. Further, the lack of biolimiting iron, and lower preservation potential due to
oxidation of organic matter, yielded a formation of lower organic carbon concentration, where preservation occurred via rapid burial. It is
noteworthy that, despite the lower organic carbon content, the Point Pleasant hosts a pore pressure gradient far in excess of that observed in the
Marcellus. While expulsion fractures, including Mode | vertical catagenic fractures, are common to the Marcellus, they are infrequent to absent
in the Point Pleasant study area. One explanation is that the pressure needed to overcome the compressive stress carried by higher modulus,
carbonate-rich sediments was never achieved, thus limiting fracturing and hydrocarbon expulsion and preserving its high pressure. Conversely,
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stress build-up from pore pressure resulting from hydrocarbon generation in lower modulus, more clay-rich Marcellus sediments achieved the
tensile strength of the rock causing it to fracture and release hydrocarbons, subsequently lowering its pressure.
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Production Mechanism

Organic porosity and why TOC preservation matters

In both the Point Pleasant and Marcellus organic matter

hosts the majority of porosity.

Indeed, a strong correlation exists between gas-filled

porosity and TOC.

Reservoirs are self-sourcing, the original TOC represents
the starting material for hydrocarbon generation.
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Al normalization and Enrichment factors
Applications of elemental data

B 3
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Al cross plotted against clastic-derived elements Ti,
Zr, and K.

Note that while much of Si defines a clastic trend, the
relationship is more nuanced.

While Al, Ti, Zr, and K demonstrate positive
covariance, their relationships to Al (dominantly a
signal for clay) provides insight into the grain size and
enerqgy of sediment delivered to the basin.
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Elemental data commonly cast as an enrichment factor.

The element is normalized to the Al content of the sample

Accounts for an increase in abundance due to
increased sediment supply

The element/Al is then normalized to the average shale value
(Wedephol 1971, 1991).

Unity implies elemental abundance is typical of shales
EF>3 implies significant enrichment of that element
EF<1 suggests depletion of that element



Fe/Al ratio

Fe sequestration in pyrite

conditions

 Fe often decoupled from Al.
Where clastic influx swamps the reactive Fe with less reactive detrital Fe, Fe/Al is often lower under

euxinic conditions

The Point Pleasant Fe/Al ranges from 0.42 - 0.45

 suggestive of oxic/dysoxic conditions.
Marcellus Fe/Al ranges from 0.55-0.76

* suggesting anoxic/euxinic conditions.
Lower Fe/Al likely depict swamping of reactive Fe signal.

Enrichment of Fe/Al (> average shale value 0.55) = sequestering of reactive iron as pyrite = anoxic/euxinic
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U EF Mo EF

Redox history as recorded by Molybdenum and Uranium

Algeo and Tribovillard, 2009
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U EF Mo EF
Redox history as recorded by Molybdenum and Uranium

 Point Pleasant depleted values
 Indicative of oxic-dysoxic bottom water

« Marcellus parallel to molar sea —water ratio, but enriched 3-5x
* Indicative of particulate shuttle mechanism

 Requires fluctuating redox conditions (euxinic-dysoxic) and intermittent connection to
global ocean

Note the scale change from the Marcellus plots.
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Quartz in the Point Pleasant and Marcellus
Extra-basinal vs Intra-basinal quartz

« Wright (2010) demonstrated that Zr can be used to differentiate
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Biogenic Quartz in the Point Pleasant

Extra-basinal vs Intra-basinal quartz

Dominantly clastic quartz to the west
Change in ratio of Si/Zr in WV, biogenic quartz?
Strong occurrence of biogenic quartz in Greene Co.

Point Pleasant demonstrates a variety of Si/Zr relationships
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Biogenic Quartz in the Marcellus Shale OH -
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Pyrite In Mudstones
Framboids and euhedral grains

 The mode and occurrence of pyrite dispersed throughout the sediment
provides insight into the redox conditions of bottom waters at the time
sediments were deposited in both recent and ancient deposits.

* types of pyrite of interest
 Framboids: spherical aggregates of pyrite microcrystallites that form at
the chemocline (the transition from sulfide-bearing anoxic water and
oxygen-bearing water). They can form suspended in the water column
and sink to accumulate in the mud and can also form in anoxic muds.

« Euhedral: large individual grains of pyrite that form in the sediment at a
much slower rate and can precipitate directly from the interaction of
hydrogen sulfide with reactive iron.




Pyrite In Mudstones
Framboid formation

Framboids composed of iron monosulfides (mackinawite, griegite) form in the zone of Fe reduction immediately below the sulfide chemocline where
magnetic properties of the elements attract microcrystallites to each other to form spherical aggregates.
Framboids that form in the water column can grow to ~5um before the water cannot support their weight and they sink out of this zone arresting their growth
and quickly reacting with H2S to form pyrite.

« Statistical analysis of the framboid diameters show that under these conditions mean diameter is ~5 pum, with a narrow range (St. Dev 1.7 um).
Framboids forming in euxinic sediment are limited only by availability of reactants and can grow to much larger and diverse sizes, albeit at slower rates.

Sulfide Chemocline]

‘ Iron Monosulfide framboid

o

72 Pyrite framboid




Pyrite In Mudstones
Euhedral pyrite occurrence

« Euhedral pyrite forms under more protracted rates from the direct interaction of highly to more poorly reactive Fe with
hydrogen sulfide.
« Euhedral pyrite forms as individual grains but can in some instances form as secondary overgrowths of preexisting
framboids.

5 pm
I
e—

L {
(Qi et. al., 2016)

framboid diameters and associated data

A LT E R CHLORET D A DG g RYELC Bl abundant small (mean diameter = 3-5 um) framboids; narrow size
range; few if any euhedral pyrite crystals;

anoxic (no oxygen in bottom water for abundant small (mean diameter = 4-6 um) framboids, including a small
extended periods of time) number of larger framboids; few euhedral pyrite crystals;

lower dysoxic (weakly oxygenated bottom framboids 6-10 um in diameter are moderately common; subordinate
water) larger framboids and euhedral pyrite crystals;

U1 TG\ (W ETUE IO AL YRR (= W B [arge framboids are common; rare small (< 5 um diameter) framboids;
bottom water) most pyrite is euhedral crystalline;

oxic (on oxygen restriction) no framboids; rare pyrite crystals;



Pyrite in the Point Pleasant
Bulk pyrite and framboid observations

% BR % framboidal Mean 25th 75th Standard Maximum
) ) ) Diameter Percentile Percentile deviation  Framboid Population Population Framboid density
Well Formation PVI'ItE!' PVI'IT.E Well Formation n (um) (um) (um) (um) Diameter (um) =5pum (%) 210um (%) (framboids/mmz2)
Scott's Run Point Pleasant 0.56% 35.46% Point Pleasant 109 3.9 3.0 4.7 16 9 86% 0% 23
. Point Pleasant 114 3.9 3.1 46 1.4 9 91% 0% 18
' Well A
Scott’s Run Point Pleasant  0.56% 33.89% Point Pleasant 116 53 4.0 6.0 2.0 18 64% 3% 10
Scott's Run PointPleasant 0.53% 30.11% Point Pleasant 95 5.0 4.0 56 17 15 73% 3% 5
Scott's Run Point Pleasant  1.37% 8.56% PointPleasant 130 | 61 | 48 °7 23 2 >3% o%
- - Point Pleasant 170 53 4.2 5.8 1.6 13 68% 3% 9
Pettit  PointPleasant 0.09% 4.79% Wellg  PointPleasant 58 5.4 4.0 5.9 18 13 67% 2% B
Pottit Point Pleasant 0.02% 66.28% Point Pleasant 128 42 3.3 4.9 1.2 7 87% 0% 16
. . Point Pleasant 126 5.0 3.6 5.8 2.1 16 71% 5% 11
Pettit ~ PointPleasant 0.19% 6.96% Point Pleasant 62 5.4 4.2 6.3 16 1 56% 2% 4
Pettit Point Pleasant 0.18% 16.13% Point Pleasant 102 3.8 2.7 4.7 15 10.0 83% 1% 19
Pettit POint Pleasant 0 09% 1660% PO?ﬂt Pleasant 210 49 3.8 5.2 3.2 40 80% 2% 53
) i Wellc PeintPleasant 160 5.6 4 6.2 24 17 67% 7% 10
Pettit PointPleasant 0.27% 7.22% Point Pleasant 110 47 3.8 5.2 14 10 83% 2% 28
BIG190 Point Pleasant 0.64% 19.25% Point Pleasant 497 3.8 2.8 4.5 14 11 91% 1% 124
. Point Pleasant 436 4 2.9 4.7 15 12 85% 0% 109
BIG190 PointPleasant 0.44% 9.34% Point Pleasant 102 5 3.7 5.7 1.7 10 72% 2% 7
BIG190 PointPleasant 0.33% 3.98% Point Pleasant 100 4.2 3.3 4.8 13 8 83% 0% 6
. Point Pleasant 103 4.8 3.7 5.3 1.6 11 78% 3% 11
BIG190 PointPleasant 0.44% 17.63% WellD Point Pleasant 103 3.8 2.9 43 1.2 7 85% 0% 25
BIG190 PointPleasant 1.73% 23.09% Point Pleasant 127 4 3.1 47 12 8 87% 0% 56 20 _ \
BIG190 Point Pleasant 0.86% 33.05% Point Pleasant 100 4 23] 4.7 16 12 87% 2% 66 \
Point Pleasant 105 3.8 3 43 1.4 9 90% 0% 93 \
Average 0.52% 20.77% Point Pleasant 100 47 3.4 5.6 138 10 73% 1% 13 co m\

£\
ANOX.% . DYSOXIC

« Point Pleasant samples have a low occurrence of both bulk pyrite and framboids.

Mean Framboid Diameter (um)
= W
[=] (=]

|

« Mean framboids are all very small, average 4.6 um, with narrow size range (x 1.7 um).

EUXINIE \

« While present, framboids >10um are quite rare (average 2% of population). o . ) ; . ;

Standard Deviation . All PtP




Pyrite in the Point Pleasant

* Pyrite data tells two different stories.

« Overall paucity of pyrite, combined with euhedral pyrite
being the most common form, would suggest a dominantly
dysoxic to oxic water column.

« Small mean diameter of framboids (4.6 um) and the low
standard deviation (~1.7 um) are consistent with framboids
accumulating in an anoxic-euxinic water column.

| conditons | framboid diameters and associated data

euxinic (persistently sulfidic bottom abundant small (mean diameter = 3-5 pm) framboids; narrow size range; few if
water) any euhedral pyrite crystals;

anoxic (no oxygen in bottom water for abundant small (mean diameter = 4-6 pm) framboids, including a small number
extended periods of time) oflarger framboids; few euhedral pyrite crystals;

lower dysoxic (weakly oxygenated framboids 6-10 pm in diameter are moderately common; subordinate larger Pyrite framboid
bottom water) framboids and euhedral pyrite crystals;

. Iron Monosulfide framboid

(1o @ VO (M ETUE NG LN CER G RG( [arge framboids are common; rare small (< 5 um diameter) framboids; most pyrite
in bottom water) is euhedral crystalline;

oxic (on oxygen restriction) no framboids; rare pyrite crystals;




Pyrite in the Point Pleasant
Lack of Reactants

« Lack of reactants. If the system is subject to a lack of reactive iron or hydrogen .
sulfide then pyrite formation would be limited.
* There is evidence for this in modern Santa Barbara Basin sediments off the
coast of California, where Fe limitation is called on to explain framboids of a .
mean diameter of 4 um accumulating under a suboxic water column
(Schieber and Schimmelmann, 2007).

A strong relationship exists between clastic influx (Al %)

and number of framboids. Unsurprisingly, the Utica hosts

more framboids given its higher Al content.

The Utica however, does not contain as many framboids

per Al content as would be expected given the Point

Pleasant trend.

« This may represent a shift in the balance of reactive

versus detrital Fe where a larger component of Utica
Fe is detrital and not available to the production of

Average shale Fe/Al : 0.55 (Wedephol, 1971)
Average Upper Crust Fe/Al: 0.44 (Taylor and McLennan, 1985)

pyrite.

Well Formation Al (%) Fe/Al

Scott's Run PointPleasant  3.59 0.41 . 100

scotshun ronpleasnt 374 026 | All samples depleted relative

Scott's Run Point Pleasant  3.43 0.35 g 1

stterun Pomipleant 352 o3 | L0 @verage shale values and
pettit _|Point Pleasant) 382 | 038 most are depleted relative to 0 - Average Al in the Point
Pettit  PointPleasant  2.57 0.43 /
Pettit  Point Pleasant  2.69 0.48 Crustal Values (average Fe/Al 70 ."I Pleasant (n = 125) 6.5%
Pettit  PointPleasant  2.99 0.43 . e i R 3 8 15 O STDEV
Pettit  PointPleasant 2.80  0.41 of all Point Pleasant data E w 5 (Range 3.8-15.0;
Pettit  Point Pleasant g o ' 14%) ~25% below the
BIG190 PointPleasant  4.42 0.54 O . 45) . z 50 i !
BIGI90 PointPleasant 3.27 052 £ ' average shale value of
BIGI90 PointPleasant  3.33 0.51 £ 40 ] 0 ; S
BIG190 Point Pleasant  4.03 0.42 ,‘I 88 /O SuggeStlng Ilmlted
BIGI9 PointPleasant 476 049 | ® Supply of Fe, namely 30 clastic and attendant
BIG190 PointPleasant  5.04 0.41 . . .'I . .

Shipman Point Pleasant  4.32 0.37 reaCtlve Fe to the baS|n7 WaS 2 . reaCtlve Fe Inﬂux

Shipman Point Pleasant  2.80 0.46 1 1 / ®

Shipman Point Pleasant ~ 3.19 0.36 Ilmlted' 10 ]

Shipman Point Pleasant  4.01 0.35 g

Shipman Point Pleasant  3.48 0.39 000 - 2 c 00 00 1000

Shipman Point Pleasant  3.34 0.37 Al (%)

Shipman PointPleasant  3.77 0.37

Shipman PointPleasant  3.86 0.37




Pyrite in the Marcellus

%8R %framboidall © Marcellus characterized by a high occurrence of bulk pyrite, much of which occurs as framboids.

Well Formation Pyrite Pyrite

Huey Oatka Creek  0.76% 70.70% )
Heey oatkacreek 143%  4298% | * Mean framboids are generally small, >6um.
Huey Oatka Creek = 0.95% 58.95%
Huey Oatka Creek = 2.94% 34.75%

Huey  OatkaCreek 4.42%  2873% | o Framboids >10um are commonly found in most samples.
Huey Oatka Creek = 3.48% 54.81%

Huey Union Springs  2.75% 52.43%
Huey Union Springs  2.13% 13.01%
Huey Union Springs  1.66% 61.75%
Huey Union Springs  1.70% 65.39%
Huey Union Springs  3.74% 55.66%

Huey Average 2.36% 49.01%
2 TOC(.M%) 2 Sequence 8.0 \
v GRIAPN)  goo| Stratigraphy \
— \
2585 =iy - 1
g ' X @) O
= PR B \
z i £ \O
8 s . e 6.0 \ |
p oy . s Anoxic @g) O
g £ . T _ggnciz8 o Dysoxic
E E L £ \ (O Geneseo Shale
. S 20 -E’ 3 RsT —mpe = v
g E & e Dm g 50— 9 ~.-: \‘ ‘ Levanna Shale
e [T, | [ESEEE e ® | \ O Oatka Creek Shale
Z —A © '
O oatha creek 2 - ; \ -
2 i Wi - |35 | pEE—— = i : A @ Union Springs Shalg
o L 1sT —"'——ﬁ.aos - i '
§ 4 oe15 o4 I _‘_'.E&_E— — = Euxinic : \‘
= R . o] et || B 10 \
J 3= & 3 \
x Z < 2820 = = 4 '
a = . =T - n =100 ' ‘
= i T T——— '
" sy - ¢ e : \
ONONDAGA 2625 o ‘%.9} . \
LIMESTONE : i T T T - s : 2.0
| 0 5 10 15 2 25 30 SEM HV: 10.0 kV wo: 1264mm | || MIRA3 TESCAN 0.0 1.0 20 30 4.0 5.0
2630 = Framboid Diameter (pum) SEM MAG: 8.32 kx Det: BSE 10 pm ' ' ' - . .
View field: 59.4 um  Date(midly): 080217 RJLee Group, Inc. Standard Deviation (um)




Pyrite in the Marcellus

« Marcellus framboids record dominantly anoxic to euxinic conditions.

* Occasionally the chemocline is forced down to, or below, the sediment-
water interface, promoting the growth of diagenetic framboids.

* Results in a time-averaged data set that records the dominant conditions.
However it can be difficult to tease out annual or decadal fluctuations in the
position of the redox boundary.

-

1. Small syngenetic framboids (SF) form in the
water column.

2. Chemocline drops, to or below, the sediment-
water interface and diagenetic framboids
(DF) form.

3. Euhedral grains (E) form along with the
welding of framboids.

. Iron Monosulfide framboid

&5 Pyrite framboid

SEM HV: 10.0 kV WD: 12.61 mm | MIRA3 TESCAN
SEM MAG: 9,32 kx Det: BSE 10 pm
View field: 59.4 pm  Date{m/dly): 08/02/17 RJLee Group, Inc.
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Pyrite in the Marcellus

TOoC LOG,, TOT MODIFIED FROM IBACH, 1852
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Redox conditions

* From these observations we can deduce that the Point Pleasant and Marcellus accumulated under markedly
different conditions.

« Exploration and production strategies, while sharing commonalities, may need to account for such diversity
In rock types.
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TOC and Sedimentation
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Total Clay (dec)

« At the log scale we can observe an inverse
relationship between clay content and TOC.

« The same holds true at the basin scale when
comparing clay distribution to original TOC
calculations.
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Reservoir Pressure
Point Pleasant vs Marcellus

* In SW PA, the pore pressure gradient in the Point Pleasant is ~30% higher than in the Marcellus.

« How is this possible considering the preservation and generative potential of the Point Pleasant is
so much lower?

« Perhaps the answer lies in expulsion of hydrocarbon through catagenic fractures.

The catagenic fracture exists in the highest TOC rock.

Higher occurrence of TOC generates more hydrocarbon.

Low permeability means the gas can’t escape (sealed).

Pressure builds until it exceeds the confining stress and tensile strength of the rock.

Rock fractures and the seal ruptures, gas is allowed to escape and an equilibrium is
reached.

Formation wells analyzed Average joints/ft
Marcellus 6 0.27
Point Pleasant 2 0.03

-+ The Marcellus has an order of magnitude more joints than the
Point Pleasant.

* |t is possible that the Point Pleasant never generated enough
pressure to fracture the rock and expulse hydrocarbon.
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Conclusions

The Point Pleasant and Marcellus accumulated under very different circumstances.

The Point Pleasant:
« Accumulated under dys(oxic) conditions where TOC preservation was accomplished by rapid burial.

The Marcellus:
« Accumulated under dominantly euxinic conditions where TOC concentration is controlled by dilution
from clastic influx.

The greater reservoir pressure observed in certain parts of the Point Pleasant may be due to the lack of
catagenic fracturing and attendant expulsion of hydrocarbons.





