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Abstract

A number of geologic variables assert some element of control on the producibility of the Niobrara Formation. Maturity, source, porosity,
wettability, thickness, lithology, fracturing, depositional facies and stratigraphy are all critical to the Niobrara petroleum system. Understanding
the distribution, variability, and role they play is critical to unraveling the economic viability across the basin. Depositional facies and
stratigraphic framework are two of the most important as they form the basis and context for evaluating these controls. Over 50 cores have been
taken in the Niobrara in the DJ and over 10,000 well logs tied to the cores allow the depositional and stratigraphic framework to be delineated.

The Niobrara is stratigraphically divided into chalk and marl sequences at multiple scales that occur across the entire basin. Depositional facies
record this cyclicity with individual (cm scale) marl to chalk couplets stacking into chalkening upwards and marling upwards sequences (meter
scale) as a result of climatic and sea level fluctuations. Marl beds are deposited during periods of increased terrigenous input with higher
preservation of organic material. Chalk beds form during times of decreased terrigenous input and increased oceanic circulation with an
associated increase in bioturbation resulting in higher porosity and permeability. Several basin-wide surfaces separate the Niobrara into
genetically related sequences creating a unique depositional and stratigraphic framework for each zone. The surfaces are associated with
regional chalk or marl beds and occur both at the base and within the C, B, and A intervals. They can be overlain by a thin lag deposit and show
truncation of beds below and down lap above the surface. This can result in the erosion or non-deposition of entire intervals, both marl and
chalk. Changes in sea floor currents and local sub-basin subsidence rates may explain their genesis. Conversely, locally expanded sequences
are the result of increased relative subsidence rates with a corresponding change in rock properties.

Depositional facies is the dominant control on Niobrara source and reservoir rock properties and thus its producibility. The vertical and
lateral variability of the facies and recognition of the sequence and bounding surfaces are thus critical in understanding the distribution of
reservoir attributes.
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DJ Basin Niobrara Stratigraphy
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Niobrara Cores Lithology: Foram Peloidal

Wackestone — Packstone
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Interval thickness
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Niobrara Depositional
Sequence Summary

|B Bioclastic Zone|

TT: Transgressive, open circulation
= Chalk-rich, dry cycle

= Low TOC

= Biotic processes dominate (CO3
productivity, microbial, burrowing)
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Key Surfaces & Sequences
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B Marl — B Chalk




B Chalk Pinchout
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Niobrara A Marl — A Chalk
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Condensed
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Conclusions:
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A, B, C Intervals bounded by non-
depositional/condensed/erosional surfaces

Condensed intervals: higher TOC, increase in ash beds

Differential subsidence leads to condensed and
expanded sections creating lens-shaped geometries

NW-SE (FR)\ SW-NE (WWF) orientation

Result of differential movement of WWF/Front Range
type structures
- ~,

WIS regional surfaces or only specific to DJ? -



Even in the DJ Niobara the stratigraphic architecture &
facies are a critical control on OOIP and thus production
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Questions?
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