
PSCharacterization of a Seismic-Scale, Outcropping Channel-Levee Complex, 
Tres Pasos Formation, Southern Chile* 

Sebastian A. Kaempfe1, Brian W. Romans1, Stephen M. Hubbard2, Lisa Stright3, Benjamin G. Daniels2, Sarah Southern2 

Search and Discovery Article #51512 (2018)** 
Posted August 20, 2018 

*Adapted from poster presentation given at AAPG 2018 Annual Convention & Exhibition, Salt Lake City, Utah, United States, May 20-23, 2018
**Datapages © 2018. Serial rights given by author. For all other rights contact author directly. 

1Virginia Tech, Blacksburg, VA, United States (skaempfe@vt.edu) 
2University of Calgary, Calgary, AB, Canada 
3Colorado State University, Fort Collins, CO, United States 

Abstract 

Seismic reflection datasets enable large-scale characterization of deep-water slope channel systems, whereas outcrop studies are essential for 
investigating stratigraphic details. Consideration of both scales is crucial for development of conceptual models to characterize these systems. 
However, seismic resolution limits bed- to geobody-scale interpretation, whereas most outcrops are limited by their scale or stratigraphic 
context. Linking these scales of observation is important for understanding slope channel systems and characterizing subsurface hydrocarbon 
reservoirs. 

We describe a previously undocumented, 750 m long by 300 m thick exposure of a slope channel system from the Tres Pasos Formation that 
crops out 25 km north of Puerto Natales, Chile. This formation records the southward filling of the Magallanes Basin axially, through a 
prograding clinoform system (800-1000 m relief) that connects shelf deposits of the Dorotea Formation with deep-water units. The present-day 
outcrop belt extends for >100 km from north to south (along depositional dip), offering a rare opportunity to consider fine-scale facies and 
architectural details together with seismic-scale stratigraphic context. The studied section is interpreted to be located ~40 km down-dip from a 
coeval shelf edge, and it is characterized with more than 1300 m of measured stratigraphic section, approximately 500 paleocurrent 
measurements, and GPS mapping of 100s of stratal surfaces. 

Analysis of stratigraphic data reveals several composite channel-form bodies, each up to 40 m thick and ~250 m wide. The lower units show 
evidence for lateral migration and low aggradation whereas the upper units are characterized by greater aggradation and a laterally offset 
stacking pattern. This suggests that vertical connectivity between channel fill sandstone is higher in the basal part of the succession and the 
preservation of fine-grained out-of-channel deposits is prominent in the upper part. A distinctive, tens of m thick siltstone-prone succession 
occurs lateral to channel fills and is dominated by thin (mostly <5 cm), fine-grained beds that rarely exhibit amalgamation. We propose that 
this unit represents an inner levee or terrace deposit. The discovery of an outcrop with this unique range of channel system components in the 
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Tres Pasos Formation provides key insight into the outcrop belt, as well as facies and stratigraphic architecture trends in petroliferous deep-
water conduit deposits, worldwide. 
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1. Magallanes Basin Deep-water Depositional System

2. Lithofacies Associations & Depositional Environment Interpretation

Abstract
Seismic re�ection datasets enable large-scale characterization of deep-water slope channel systems, 
whereas outcrop studies are essential for investigating stratigraphic details. Consideration of both 
scales is crucial for development of conceptual models to characterize these systems. However, seis-
mic resolution limits bed- to geobody-scale interpretation, whereas most outcrops are limited by 
their scale or stratigraphic context. Linking  these scales of observation is important for understan-
ding slope channel systems and characterizing subsurface hydrocarbon reservoirs.

We describe a previously undocumented, 750 m long by 300 m thick exposure of a slope channel 
system from the Tres Pasos Formation that crops out 25 km north of Puerto Natales, Chile. This forma-
tion records the southward �lling of the Magallanes Basin axially,  through a prograding clinoform 
system (800-1000 m relief ) that connects shelf deposits of the Dorotea Formation with deep-water 
units. The present-day outcrop belt extends for >100 km from north to south (along-depositional-
dip), o�ering a rare opportunity to consider �ne-scale facies and architectural details together with 
seismic-scale stratigraphic context. The studied section is interpreted to be located ~40 km down-dip 
from a coeval shelf edge, and it is characterized with more than 1300 m of measured stratigraphic 
section, approximately 500 paleocurrent measurements, and GPS mapping of 100s of stratal surfa-
ces.

Analysis of stratigraphic data reveals several composite channel-form bodies, each up to 40 m thick 
and ~250 m wide. The lower units show evidence for lateral migration and low aggradation whereas 
the upper units are characterized by greater aggradation and a laterally o�set stacking pattern. This 
suggests that vertical connectivity between channel �ll
sandstone is higher in the basal part of the succession and the preservation of �ne-grained out-of-
channel deposits is prominent in the upper part. 

A distinctive, tens of m thick siltstone-prone succession occurs lateral to channel �lls and is domina-
ted by thin (mostly <5 cm), �ne-grained beds that rarely exhibit amalgamation. We propose that this 
unit represents an inner levee or terrace deposit. The discovery of an outcrop with this unique range 
of channel system components in the Tres Pasos Formation provides key insight into the outcrop 
belt, as well as facies and stratigraphic architecture trends in petroliferous deep-water conduit depo-
sits, worldwide.

LA1a: Thick-bedded, 
amalgamated 
sandstone

LA1b: Thin- to thick-bedded, 
semi-amalgamated 
sandstone

Thinly interbedded 
siltstone  and 
sandstone 

Discordant 
siltstone-dominated
deposit

Modi�ed from Malkowski et al., 2018
A, B, D & E modi�ed from Daniels et al.  (2018). C Adapted from Wilson (1991); Fildani & Hessler (2005); Fosdick et al. (2011); and Schwartz et al. (2017).

A B

E

C

D

Generalized geological map of southern South 
America highlighting the Mesozoic sedimentary 
belt.  The Cretaceous sedimentary outcrop belt 
in the study area is the result of the inherent 
evolution of fold-thrust belt propagation and 
progressive uplift of basinal segments in fore-
land basins setting.
Structure contour (depth in meters) represents 
the undeformed Magallanes Foreland Basin on 
top of the Jurassic Tobífera Formation.

Overview of the deep-water slope system of the 
Magallanes Basin. (A) Satellite image with key 
locations where slope-channel systems of the 
Tres Pasos Fm have been studied. (B) Geologic 
map of the Magallanes-Austral Basin in the 
Última Esperanza Province, Chile. (C) Lithostrati-
graphy and depositional enviroment of the Ma-
gallanes Basin �ll in the study area. (D) Perspec-
tive satellite image of the slope-channel system 
outcrop belt parallel to the sedimentary dip. (E) 
Regional cross-section of the Cretaceous sha-
llow- to deep-water system formed by the Do-
rotea Fm (shelf ), Tres Pasos Fm (slope) and Cerro 
Toro Fm (basin �oor) equivalent to �gure D. 
Geochronology sample locations in Daniels et 
al. (2018). 

LA1

LA2

LA3

Name Description Dep. Proccess

Thick-bedded (> 50 cm), medium- and sometimes coarse-grained sandstone 
beds. Structureless at the base (Ta) and/or with planar lamination (Tb) nor-
mally graded up to �ne-grained sandstone. Ripple cross lamination can be 
present (Tc), but commonly absent/eroded by the following unit. The basal 
contact is usually undulated and can show �ame structures. Dewatering 
structures (dish and pillars) can be recognized in this units. 
Mudstone intraclast rich sandstones and gravelly sandstones are included in 
this category.

Less than a 1 m thick units composed of medium- to very �ne-grained 
sandstone beds interbedded with siltstone. Normally graded, massive at the 
base with development of planar lamination (Tb), ripple cross lamination 
(Tc) and sometimes siltstone laminae (Td) and millimetric mudstone caps 
(Te). Bioturbation and organic rich sediments are common.

Centimetric scale interbedding of siltstone and �ne- to very-�ne sandstone. 
Sandstone beds are usually less than 10 cm and  ripple laminated (Tc). Silts-
tone may be present as very �ne-grained sandstone laminae (Td) or be mas-
sive (Te). Bioturbation is common and thicker sandstone beds in this unit 
will frequently be organic rich. 

Siltstone- and mudstone-dominated deposits, no apparent bedding planes, 
although it may preserve contorted sandstone beds. Sometimes pebble-size 
extra-basinal clasts can be incorporated in the siltstone. Tops are commonly 
very bioturbated and organic rich.

LA4

Concordant 
siltstone-dominated
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Massive siltstone. Millimetric beds of very �ne-grained sandstone may be 
present.
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3. Field Data & Photogrammetry Model
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4. Element III-A “Smiley”

5. Channel Complexes & Elements
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Photogrammetry model of the 7 km long Sola Ridge, where the studied outcrop
is located. The model was built with Agisoft PhotoScan using 943 di�erent photos 
taken with a Dji drone. 

3.1

3.2

Area featured in Figure 3.2

Stratigraphic cross-section showing the distribution of slope-channel strata; in the 
nomenclature of Sprague et al. (2002), the outcrop is divided into a lower channel 
complex set, where only the �nal three elements are outcropping in a laterally o�set 
and aggradational stacking pattern, and an upper channel complex set comprise by 
three channel complexes. The base of the upper complex set is characterized by 
lateral migration and degradation of channel elements, whereas the overlying two
channel complexes consists on vertucally o�set aggrading elements.  
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Architectural features of channel complexes and elements. (A) Thick-bedded, non-amalgamated sandstone interpreted as channel 
o�-axis of Channel complex I-B. (B) Thick- to thin-bedded, non-amalgamated sandstone interpreted as channel o�-axis to margin 
facies of Channel complex I-A . (C) Amalgamated channel elements with low relief basal surface, interpreted as laterally migrating 
channels. (D) Mudstone intraclast conglomerate commonly occuring at the base of a channel complex-set. (E) Channel complex II-A 
characterized by lateral migration and degradation of channel elements. (F) “Smiley” element composed of several amalgamated units. 

(G) Detail of intra-channel element incision surfaces at the channel margin. (H) Mudstone instraclasts 
conglomerate lenses are common at the base of channel axis deposits. (I) Scour surfaces (traced in red) in 
debritic deposits at the base of channel elements. (J-K) Vertical and lateral transition from O�-axis to Axis 

represented by thick- to thin-bedded non-amalgamated sandstone to thick-bedded 
amalgamated sandstone and mudstone intraclasts lenses. (L) Transition from 
non-amalgamated thick- to thin-bedded sandstones interpreted as o�-axis to thin-bedded 
non-amalgamated margin facies at channel element  III-B; the o�-axis is overlain by younger 

margin facies. (M) Channel complex IV-A showing lateral migration 
and aggradation of channel elements. Axis to margin transitions 
from left to right. (N) Channel axis sandstone with debrite intraclasts. 
(O) Channel axis sandstone with debrite intraclasts.
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25 cm

Indus submarine channel system - Unit CLS3 (Covault et al., 2016)

Sola Ridge System (this study)
Indus submarine channel system - Unit CLS2

(Deptuck et al., 2003)
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The presence of a rarely outcropping inner-levee portion in the system provides an unique oppor-
tunity to generate a quantitative characterization of siltstone rich facies in context of architec-
ture (eg. margin vs overbank facies).
Additionally, the regional context of this research allow us to integrate this and other outcrop’s 
data along Sola ridge (see �gure 3.1) in context of longitudinal changes in slope channel archi-
tecture (see Daniels et al. poster for further information).
Finally, the possibility to re�ne conceptual models of composite channel systems in relation to 
prominent erosion surfaces at the boundary between basal, laterally migrating and
low aggradation channel complex and overlying vertically stacked and high aggradation channel 
complex. ¿Does erosion surfaces predict down-slope sandstone-prone facies distribution?
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6. Incision surface & inner-levee deposits
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O�shore Angola (Mayall et al., 2006)
7. Analogy to other systems
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Details of the incision surface found on the top of unit II-B. This surface correlates to the base of
unit III-A  to the North. In this outcrop the the incision is overlain by concordant �nes.
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6.2

To the South, a siltstone succession occurs lateral to channel �lls of unit III-A and III-B. This succession
is dominated by very thin (mostly <5 cm), very �ne-grained sandstone laminae interpreted as an inner 
levee or terrace deposit. Thicker and coarser (medium-grained) sandstone beds appear towards the top
of the succession and are interpreted as splay deposits related to the inception of unit III-B.
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