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Abstract

Seismic reflection datasets enable large-scale characterization of deep-water slope channel systems, whereas outcrop studies are essential for
investigating stratigraphic details. Consideration of both scales is crucial for development of conceptual models to characterize these systems.
However, seismic resolution limits bed- to geobody-scale interpretation, whereas most outcrops are limited by their scale or stratigraphic
context. Linking these scales of observation is important for understanding slope channel systems and characterizing subsurface hydrocarbon
reservoirs.

We describe a previously undocumented, 750 m long by 300 m thick exposure of a slope channel system from the Tres Pasos Formation that
crops out 25 km north of Puerto Natales, Chile. This formation records the southward filling of the Magallanes Basin axially, through a
prograding clinoform system (800-1000 m relief) that connects shelf deposits of the Dorotea Formation with deep-water units. The present-day
outcrop belt extends for >100 km from north to south (along depositional dip), offering a rare opportunity to consider fine-scale facies and
architectural details together with seismic-scale stratigraphic context. The studied section is interpreted to be located ~40 km down-dip from a
coeval shelf edge, and it is characterized with more than 1300 m of measured stratigraphic section, approximately 500 paleocurrent
measurements, and GPS mapping of 100s of stratal surfaces.

Analysis of stratigraphic data reveals several composite channel-form bodies, each up to 40 m thick and ~250 m wide. The lower units show
evidence for lateral migration and low aggradation whereas the upper units are characterized by greater aggradation and a laterally offset
stacking pattern. This suggests that vertical connectivity between channel fill sandstone is higher in the basal part of the succession and the
preservation of fine-grained out-of-channel deposits is prominent in the upper part. A distinctive, tens of m thick siltstone-prone succession
occurs lateral to channel fills and is dominated by thin (mostly <5 cm), fine-grained beds that rarely exhibit amalgamation. We propose that
this unit represents an inner levee or terrace deposit. The discovery of an outcrop with this unique range of channel system components in the
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Tres Pasos Formation provides key insight into the outcrop belt, as well as facies and stratigraphic architecture trends in petroliferous deep-
water conduit deposits, worldwide.

References Cited

Covault, J., Z. Sylvester, S. Hubbard, Z. Jobe, and R. Sech, 2016, The Stratigraphic Record of Submarine-Chanel Evolution: The Sedimentary
Record.

Daniels, B., N. Auchter, S. Hubbard, B. Romans, W. Matthews, and L. Stright, 2018, Timing of deep-water slope evolution constrained by
large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile: Geological Society of America Bulletin v. 130, p.
438-454.

Deptuck, M., G. Steens, M. Barton, and C. Pirmez, 2003, Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in
the Arabian Sea: Marine and Petroleum Geology, v. 20, p. 649-676.

Fildani, A., and A. Hessler, 2005, Stratigraphic record across a retro arc basin inversion: Rocas Verdes - Magallanes Basin, Patagonian Andres,
Chile: Geological Society of America Bulletin v. 117, p. 1596-1614.

Fosdick, J., B. Romans, A. Fildani, A. Bernhardt, M. Calderdn, and S. Graham, 2011, Kinematic evolution of the Patagonian retro-arc fold-
and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51°30°S: Geological Society of America Bulletin, v. 123, p. 1679-1698.

Malkowski, M., Z. Jobe, G. Sharman, and S. Graham, 2018, Down-slope facies variability within deep-water channel systems: Insights from
the Upper Cretaceous Cerro Toro Formation, southern Patagonia: Sedimentology, https://doi.org/10.1111/sed.12452

Mayall, M., E. Jones, and M. Casey, 2006, Turbidite channel reservoirs - key elements in facies prediction and effective development: Marine
and Petroleum Geology, v. 23, p. 821-841.

Schwartz, T., J. Fosdick, and S. Graham, 2017, Using detrital zircon U-Pb ages to calculate Late Cretaceous sedimentation rates in the
Magallanes - Austral basin, Patagonia: Basin Research, v. 29, p. 725-746.


https://doi.org/10.1111/sed.12452

Abstract 1. Magallanes Basin Deep-water Depositional System
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2. Lithofacies Associations & Depositional Environment Interpretation

Description Dep. Proccess TV . aggradational channel elements
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SR LA1a: Thick-bedded, present (Tc), but commonly absent/eroded by the following unit. The basal
amalgamated contact is usually undulated and can show flame structures. Dewatering
. sandstone structures (dish and pillars) can be recognized in this units.
Mudstone intraclast rich sandstones and gravelly sandstones are included in
this category.

slope channel 7 L iy
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3 O F i e I d Data & P h Otog ra m m Et ry M Od EI 5 ® c h a n n e I Co m p I exes & E I e m e nts Architectural features of channel complexes and elements. (A) Thick-bedded, non-amalgamated sandstone interpreted as channel

off-axis of Channel complex I-B. (B) Thick- to thin-bedded, non-amalgamated sandstone interpreted as channel off-axis to margin
facies of Channel complex I-A . (C) Amalgamated channel elements with low relief basal surface, interpreted as laterally migrating
channels. (D) Mudstone intraclast conglomerate commonly occuring at the base of a channel complex-set. (E) Channel complex II-A

characterized by lateral migration and degradation of channel elements. (F) “Smiley” element composed of several amalgamated units.
(G) Detail of intra-channel element incision surfaces at the channel margin. (H) Mudstone instraclasts

conglomerate lenses are common at the base of channel axis deposits. (1) Scour surfaces (traced in red) in

debritic deposits at the base of channel elements. (J-K) Vertical and lateral transition from Off-axis to Axis
represented by thick- to thin-bedded non-amalgamated sandstone to thick-bedded

amalgamated sandstone and mudstone intraclasts lenses. (L) Transition from
non-amalgamated thick- to thin-bedded sandstones interpreted as off-axis to thin-bedded

non-amalgamated margin facies at channel element IlI-B; the off-axis is overlain by younger
margin facies. (M) Channel complex IV-A showing lateral migration

and aggradation of channel elements. Axis to margin transitions
from left to right. (N) Channel axis sandstone with debrite intraclasts.
(0) Channel axis sandstone with debrite intraclasts.

Area featured in Figure 3.2

Photogrammetry model of the 7 km long Sola Ridge, where the studied outcrop
is located. The model was built with Agisoft PhotoScan using 943 different photos
taken with a Dji drone.

In Figure 5.1 N5 N =T 3 : Stratigraphic cross-section showing the distribution of slope-channel strata; in the
£ | | ' nomenclature of Sprague et al. (2002), the outcrop is divided into a lower channel
complex set, where only the final three elements are outcropping in a laterally offset
and aggradational stacking pattern, and an upper channel complex set comprise by
three channel complexes. The base of the upper complex set is characterized by
lateral migration and degradation of channel elements, whereas the overlying two
channel complexes consists on vertucally offset aggrading elements.
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6. Incision surface & inner-levee deposits

Details of the incision surface found on the top of unit lI-B. This surface correlates to the base of
unit lll-A to the North. In this outcrop the the incision is overlain by concordant fines.
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To the South, a siltstone succession occurs lateral to channel fills of unit llI-A and IlI-B. This succession
is dominated by very thin (mostly <5 cm), very fine-grained sandstone laminae interpreted as an inner
levee or terrace deposit. Thicker and coarser (medium-grained) sandstone beds appear towards the top

of the succession and are interpreted as splay de

osits related to the inception of unit IlI-B.

7. Analogy to other systems

Sola Rldge System (this study)

-_——————-

-

Legend

Sandstone dominated facies
|:| Siltstone dominated facies

Non-concordant siltstone
dominated facies

=== Complex Set boundary
=mmm Complex boundary
= Channel Element boundary

Indus submarme channel system Unit CLS3 (covaultet al., 2016)

Internal erosional

surfaces

Inner levees
draping terraces

Basal erosional surface

Mass transport deposit?

Indus submarine channel system - Unit CLS2
(Deptuck et al., 2003)

Erosional

Ercsional D-C HARS
Chanrelforms Tefrace

fairway

8. Ongoing/future work

The presence of a rarely outcropping inner-levee portion in the system provides an unique oppor-
tunity to generate a quantitative characterization of siltstone rich facies in context of architec-

ture (eg. margin vs overbank facies).
Additionally, the regional context of this research allow us to integrate this and other outcrop’s

data along Sola ridge (see figure 3.1) in context of longitudinal changes in slope channel archi-

tecture (see Daniels et al. poster for further information).
Finally, the possibility to refine conceptual models of composite channel systems in relation to
prominent erosion surfaces at the boundary between basal, laterally migrating and

low aggradation channel complex and overlying vertically stacked and high aggradation channel

complex. ;Does erosion surfaces predict down-slope sandstone-prone facies distribution?
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