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Abstract

One issue in reservoir development is the predictability of reservoir performance given the limited
available data. It would be beneficial if we could view an outcrop and infer the likely dynamic behaviour
in an analogous reservoir. In viewing outcrops therefore, we need to understand the complex interplay of
how specific fluids interrogate the various heterogeneities; this can lead to a variety of interpretations.
Previous work has shown that a variety of interpretations are available when viewing the same seismic
section — this study proceeds along similar lines in the case of a rock outcrop. Within field simulation can
enhance our ability to identify the key geological aspects affecting fluid flow.

Thirty-five Reservoir Engineers and Geoscientists, from different companies, were asked to view the
outcrop at Tullig Point in south west Ireland. The outcrop is interpreted as a distributary channel or mouth
bar succession that can be viewed both panoramically, from a neighbouring promontory, and also in detail
through field glasses; thus, enabling geological interpretation. The group was divided into 7 teams; each
team estimated the horizontal and vertical permeability. A 2-D grid was superimposed over a photograph
of the outcrop, pseudo-logs of an injector and a producer well, and the fluid properties of the resident oil,
gas as well as the water that was to be injected into the reservoir section. Each team interpreted the
geology and estimated values for each node of the grid; these values were then used to simulate the
recovery of oil, gas, and water-cut development using a black-oil simulator. The seven sets of results
could then be compared and the performance pegged to the estimated permeability and hence back to the
observations at the outcrop.

The simulation ran for one year and the recovered cumulative oil varied 3-fold (38 Mbbls t0120 Mbbls),
the time to 80% water cut ranging from 12 days to 131 days. The span of predicted performance was
thought surprising, since the data set was possibly richer than is usual in the evaluation of reservoir
performance for real reservoirs. It was concluded that both the geology and the fluid movement needed to
be taken into account when considering the outcrop. Understanding how small variations in rock
properties can profoundly influence fluid movement is enhanced with simulation allowing the prediction
of the impact that the observed rock heterogeneities have on dynamic performance.
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Reservoir Performance Predictability

Predicting reservoir performance accurately is important for development &
management.

If we can’t predict accurately before production begins
» We can’t develop economically marginal fields

If we can’t predict accurately after production has started
» We can’t optimise recovery plan effectively

Could viewing outcrops and inferring the likely dynamic behaviour in
analogous reservoirs improve predictability?
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== predicting the
onset of water
production in an oil
field is therefore
crucial.




Water cut prediction

Water breakthrough is very difficult to predict...

Prediction

Actual \
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... breakthrough a year before prediction!
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Grid Exercise

Geologists have traditionally viewed outcrops to understand the depositional character,
the 3 dimensional architecture and understand the potential of an analogous reservoir.

Tullig Point - S.\W. Ireland — interpreted as a distributary channel sand-body.

Grid Exercise

From a parallel promontory 7 groups of mostly engineers view the outcrop

With pseudo well and core data each group were asked to estimate K, and K,
for each node in this grid — using their judgement, engineering knowledge
and their understanding of fluid flow.




Predictions from 7 groups
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Outcrop Grid Exercise - Summary

e Predicting reservoir performance from viewing outcrops can lead to a wide
variety of interpretations.

e Can we train ourselves to see what is important in the outcrop to fluid flow?

* Can we describe the flow impact of the rock outcrop adequately to improve
our predictive models?

* Where could it go wrong?
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Where can it all go wrong?

1. Sometimes small features matter...

1999- GARLAND et al Capturing reservoir heterogeneity in a sand-rich submarine fan, Miller Field

Where can it all go wrong?

2. Interpretation can be subjective

Bond et al, 2007




Where can it all go wrong?

3. We can miss important features altogether
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Digitized Outcrops

AAPG Short v2.mp4

With drone technology and digitizing algorithms
the detailed geometries of the flow units can be
estimated and then used to improve reservoir
performance predictions.
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HOMOGENEOUS

Describing - Reservoir Heterogeneity
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Random heterogeneity
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Laterally continuous heterogeneity
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Sandstones deposited as bars in a braided river
setting.
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Laterally continuous heterogeneity
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Laterally continuous heterogeneity
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Integrating the data
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Equivalent Stratified Model
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Conclusions

Reservoir Prediction is important, particularly in periods of sustained low oil
price.

When viewing outcrops the complex interplay of how fluids interrogate the
heterogeneities needs to be understood.

Possibly outcrop mapping could improve performance prediction.

A richer language to describe rock outcrops is needed.




