Quantifying Hydrophilic and Hydrophobic Pore Networks of the Bakken Shale*

Yuxiang Zhang¹, Troy J. Barber¹, Qinhong Hu¹, and Md Golam Kibria¹

Search and Discovery Article #42316 (2018)**
Posted November 19, 2018

*Adapted from oral presentation given at 2018 AAPG Annual Convention & Exhibition, Salt Lake City, Utah, May 20-23, 2018. Please see closely related article, "Multiple Approaches to Pore Structure Characterization of Bakken Petroleum System", Search and Discovery article #42127*4239+.

**Datapages © 2018 Serial rights given by author. For all other rights contact author directly. DOI:10.1306/42316Zhang2018

Abstract

Understanding rock wettability behavior from micrometer to nanometer scale is of great significance to in-situ hydrocarbon volume calculation and oil recovery improvement in tight-rock reservoirs. In this study, comprehensive rock-fluid experiments were performed to investigate wettability of three members of the Bakken Formation. The contact angle of selected specimens was measured by applying four types of hydrophilic and hydrophobic fluids (i.e., DI water, API brine, IPA isopropyl alcohol, and n-decane) to observe rock wettability at the millimeter scale. Then through a spontaneous imbibition test, different fluid flow behaviors in the shale were compared. As capillary-pressure greatly controls fluid migration in micro- and nano-pores, mercury injection capillary pressure (MICP) analysis, using non-wetting fluid mercury, was conducted to obtain pore system characteristics with multiple connected pore networks at the pore-throat size ranging in mm-nm scale. Furthermore, the wettability at nano-pore scale was qualified through a small-angle neutron scattering technique, by comparing the volume fraction of intruded fluids.

The results suggest a distinct difference in the rock wettability between the Upper/Lower Bakken and Middle Bakken, which is mainly caused by mineralogical composition and organic matter content. Multiple and complementary approaches enable us to quantify the proportion, and size distribution of hydrophilic vs. hydrophobic pore networks in the Bakken Shale.

Selected References

Anovitz, L.M., and D.R. Cole, 2015, Characterization and Analysis of Porosity and Pore Structures: Reviews in Mineralogy and Geochemistry, v. 80, p. 61-164. doi:10.2138/rmg.2015.80.04.

Kline, S.R., 2006, Reduction and analysis of SANS and USANS data using IGOR Pro: Journal of Applied Crystallography, v. 39/6, p. 895-900. doi:10.1107/S0021889806035059

Department of Earth and Environmental Sciences, The University of Texas at Arlington, 500 Yates Street, Arlington, Texas 76019, USA (yuxiang.zhang.cn@gmail.com)

Pitman, J.K., L.C. Price, and J.A. LeFever, 2001, Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member: U.S. Geological Survey Professional Paper 1653, 19 p.

Radlinski, A.P., C.J. Boreham, P. Lindner, O. Randl, G.D. Wignall, A. Hinde, and J.M. Hope, 2000, Small angle neutron scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks: Organic Geochemistry, v. 31/1, p. 1-14. doi: 10.1016/S0146-6380(99)00128-X

Radlinski, A.P., M. Mastalerz, A.L. Hinde, M. Hainbuchner, H. Rauch, M. Baron, J.S. Lin, L. Fan. and P. Thiyagarajan, 2004, Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal: International Journal of Coal Geology, v. 59/3, p. 245-271. doi:10.1016/j.coal.2004.03.002

Webster, R.L., 1984, Petroleum Source Rocks and Stratigraphy of the Bakken Formation in North Dakota, *in* J. Woodward, F.F. Meissner, and J.C. Clayton, eds., Hydrocarbon source rocks of the greater Rocky Mountain Region: Rocky Mountain Association of Geologists, Denver, p. 57-81

Washburn, E.W, 1921, The dynamics of capillary flow: Physical review, v. 17/3, p. 273-283. doi: 10.1103/PhysRev.17.273

Quantifying Hydrophilic and Hydrophobic Pore Networks of the Bakken Shale

The University of Texas at Arlington Yuxiang "Shawn" Zhang, Troy J. Barber, Qinhong Hu, Md Golam Kibria

Background & Motivation

(EIA Report, May 2018)

Purpose

Study Purpose:

Characterize pore geometry, connectivity, and wettability of the Bakken Shale from nanometer to micrometer scales

Main techniques:

- 1. Mercury injection capillary pressure (MICP) analysis
- Small angle and ultra-small angle neutron scattering (SANS and USANS) measurements

(modified from Anovitz and Cole, 2015)

Workflow

Experiments - sample acquisition

(modified from Webster 1984)

Experiments - XRD, TOC, SEM - Upper Bakken

- Organic-rich black shales
- Various pore types (mineral pores, organic pores)

Experiments - XRD, TOC, SEM - Middle Bakken

- Carbonate-rich
- Inter-particle and intra-particle meso/macropores

Experiments - XRD, TOC, SEM - Lower Bakken

- Organic-rich black shales
- Various pore types (mineral pores, organic pores)

Experiments - contact angle measurement & imbibition

Two fluids:

DI water: H₂O

Decane: C₁₀H₂₂ (hydrocarbon)

	DI water (mg/cm ³)	Decane (mg/cm³)
Upper Bakken	9.55	16.85
Middle Bakken	26.86	16.73
Lower Bakken	14.52	18.44

Experiments - MICP

Washburn Equation:

$$D = -\frac{4\gamma\cos\theta_c}{P}$$

D: Pore-throat diameter (cm)

γ: Surface tension (485 dyne cm⁻¹)

 θ_c : Contact angle (130°)

P: Applied pressure (dyne cm⁻²)

(Washburn, 1921)

Experiments - SANS&USANS - theory

Why neutron scattering?

- Penetrating (low adsorption)
- Nondestructive
- Detect accessible pores and inaccessible (closed) pores

$$Q=4\pi\lambda^{-1}\sin\theta$$

- **Q**: momentum transfer or scattering vector
- **λ**: neutron wavelength
- 2θ : scattering angle

Experiments - SANS&USANS - theory

$$I(Q) \sim (\Delta \rho)^2 = (\rho_1 - \rho_2)^2$$

 ρ_1 , ρ_2 : scattering length density (SLD)

$$r = 2.5/Q$$

r: size of the scattering object (e.g., pores in rocks)

(Radlinski, 2000)

Detecting size range: $^{\sim}1 \text{ nm} - 20 \mu\text{m}$ (diameter)

Experiments - SANS&USANS - experiments & model

Grain size: 177 – 500 μm

PDSP Model (polydisperse spherical pore model)

$$I(Q) = \frac{d\Sigma}{d\Omega}(Q) = (\rho_1 - \rho_2)^2 \frac{\phi_p}{\bar{V}_r} \int_{R_{min}}^{R_{max}} V_r^2 f(r) F_{sph}(Qr) dr$$

 $\bar{V}_r = \int_0^\infty V_r^2 f(r) dr$: averaged pore volume f(r): power-law pore size distribution factor $R_{min} \& R_{max}$: minimum and maximum pore radii

 ϕ_p : porosity

Results — Porosity, Pore (throat) size distribution

	MICP (Cube)	(U)SANS (Grains)*
Anderson-U	2.29%	11.69%
Anderson-M	3.71%	8.83%
Anderson-L	2.91%	12.80%

^{*} Averaged value

MICP-Porosity: middle Bakken > upper/lower Bakken

(U)SANS-Porosity: middle Bakken < upper/lower Bakken

WHY?

(U)SANS measures closed porosity Upper/lower Bakken have many inaccessible pores (micropores, mesopores, macropores) - OM pores?

Experiments - SANS&USANS - contrast matching

Mineral/pore system:

Accessible pores (grey)

Inaccessible pores (white)

An very useful technique in SANS studies to separate connected from unconnected porosity

(Anovitz and Cole, 2015)

Results - Hydrophobic & Hydrophilic Porosity - Upper Bakken

: Sample	Total porosity	, ,	$\sim (\Delta \rho)^2 = (\rho_1 - \rho_2)^2$	20 μπ 10 ¹¹ <u>e</u> -	Anderson-U (Dry)Anderson-U (Decane)
Dry	14.21%	10 ¹² •	· Anderson-U (Dry)		• Anderson-U (Water)
Decane (H/D mixed)	10.77%	The state of the s	Anderson-U (Decane)Anderson-U (Water)	108	
Water (H/D mixed)	9.13%	108	•		50 80 80 80 80 80 80 80 80 80 80 80 80 80
J		(Cm. ₁₀₄	No. of the State o	10 ⁵ u 10 ⁻⁵ 500 nm 10 ⁵ ½	10 ⁻⁴ 10 ⁻³ 50 nm 5 nm • Anderson-U (Dry) • Anderson-U (Decane)
Hydrophobic Porosity (oil-wet)	3.44%	10 ⁰		10 ²	• Anderson-U (Water)
Hydrophilic Porosity (water-wet)	5.08%	10 ⁻⁴ u 10 ⁻⁵ 10 ⁻⁴	10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ¹		
Accessible porosity	8.52%		Q (Å ⁻¹)	10 ⁻⁴ ^µ 10 ⁻³	10 ⁻² 10 ⁻¹
Inaccessible porosity	5.69%				

Results - Hydrophobic & Hydrophilic Porosity - Middle Bakken

sample	Total porosity	$I(Q) \sim (\Delta \rho)^2 = (\rho_1 - \rho_2)^2$	20 μm 5 μm 500 nm 10 ¹¹ • Anderson-M (Dry) • Anderson-M (Decane) • Anderson-M (Water)
Dry	7.20%	• Anderson-M (Dry) • Anderson-M (Decane)	88888888888888888888888888888888888888
Decane (H/D mixed)	5.08%	· Anderson-M (Water)	108
Water (H/D mixed)	2.12%	10 ⁸	
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	10 ⁵ u 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³
1		(O) (CB) 10 ⁴	500 nm 50 nm 5 nm Anderson-M (Dry) Anderson-M (Water)
Hydrophobic Porosity (oil-wet)	2.12%	100	10 ²
Hydrophilic Porosity (water-wet)	5.08%	10 ⁻⁴ " 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 Q (Å ⁻¹)	10 ⁻⁴ u
Accessible porosity	7.20%	- ` ',	10 ⁻³ 10 ⁻² 10 ⁻¹
Inaccessible porosity	0		

Results - Hydrophobic & Hydrophilic Porosity - Lower Bakken

sample	Total porosity	$I(Q) \sim (\Delta \rho)^2$	$\rho^2 = (\rho_1 - \rho_2)^2$	20 μm	5 μm 500 nm • Anderson-L (Dry) • Anderson-L (Decane)
Dry	11.10%	10 ¹² •	· Anderson-L (Dry)	**************************************	• Anderson-L (Water)
Decane (H/D mixed)	8.99%		Anderson-L (Decane)Anderson-L (Water)	108	
Water (H/D mixed)	8.89%	108			^{ستاق} ع و المتحدد
J		(Cm ⁻¹) (O)	S. S	10 ⁵ H 10 ⁻⁵ 500 nm 10 ⁵ ± •••••••••••••••••••••••••••••••••••	10 ⁻⁴ 10 ⁻³ 50 nm 5 nm • Anderson-L (Dry) • Anderson-L (Decane)
Hydrophobic Porosity (oil-wet)	2.11%	100		10 ²	Anderson-L (Water)
Hydrophilic Porosity (water-wet)	2.21%	10 ⁻⁴	10-2 10-1 100		
Accessible porosity	4.32%	C	Q (Å-¹)	10 ⁻⁴ " 10 ⁻³	10-2 10-1
Inaccessible porosity	6.78%				

Acknowledgement

Dr. Qinhong "Max" Hu Associate Professor UT Arlington

Troy J. Barber
Geologist
Joint Resource Company

Md Golam Kibria Ph.D. candidate UT Arlington

- Markus Bleuel (Center for Neutron Research, NIST)
- Hesham F. El-Sobky (Technology and Subsurface, ConocoPhillips)
- AAPG Foundation's Grants-in-Aid Program (2016 & 2018)
- National Science Foundation Graduate Research Fellowship (Grant No. 1144240)
- North Dakota Geological Survey

Contact info: yuxiang.zhang.cn@gmail.com