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Abstract

Nodal systems technology introduced a very important uplift in operational efficiency in seismic acquisition. The primary goal of the survey
design was to optimize geometries to take advantage of the operational efficiency from the nodal systems. We present examples of optimized
nodal acquisition from Peru and Bolivia. A further step in this evolution is the development of the compressive technology integrated supported
by nodal systems. This more cost-efficient 3D seismic acquisition allows us to improve the signal/noise and image quality by the integration of
non-uniform optimal sampling acquisition and its reconstruction by compressive sensing techniques. This process requires the use of
reconstruction techniques combined with forward modeling to ensure proper wavefield sampling to keep the integrity of seismic recovery from
a sparser subset. Therefore, a new survey design workflow is required to support feasible non-uniform geometries for effective noise removal
and enhanced pre-stack migration imaging. The application of this new methodology will need to challenge the irregularities from complex
surface conditions existing in the Andean basins for the non-uniform optimal sampling acquisition to support data reconstruction.
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The Andean Thrust Belts Characteristics
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Resulting Images from ACFEFM
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eismic Waefield Snapshot

These snapshoots illustrate wavefront propagation indicating accomplished illumination.
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Conventional 2D Acquisition Parameters

Recording method Split Spread/ Symmetric, Roll

On-Ruoll Off
Record length 12 Seconds
Number of lines 12
Shotpoint Interval 20 meters
Sources (# SPs) per Km 50

Charge parameters holes 18 meters, carga 15 kg

Explosive source Pentolita
Receiver Interval 10 meters
Receivers per Km 100
Array of geophones 6 x station
:g;er active channels per 2000
Cell size (bin) 5m
Maximum offset 10000 meters

Nominal Coverage (Fold) 400

NODAL 2D Acquisition Parameters

Recording method Fix spread/nodes
Record length 12 Seconds
Number of lines 12
Shotpoint Interval 25 meters
Sources (# SPs) per Km 40

Charge parameters holes 15 meters, carga 15 kg

Explosive source Pentolita
Receiver Interval 12.5 meters
Receivers per Km 80
Array of geophones 1x station
:g;er active channels per 1400
Cell size (bin) 6.25m
Maximum offset 8000 meters
Nominal Coverage (Fold) 350
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» The results show the impact of topography and source paramaters in record amplitudes
and frequency bandwith. These differences make it difficult to make a comparison
between six geophone arrays and some single sensors.

» The response of typical single sensors is about 2-3 dB lower than the response of 6
conventional elements in series. However, the sampling requirements for coherent noise
need a higher sampling for single sensors. This higher sampling will not only
compensate the potential differences in signal but also provide a data processing
solution for coherent noise attenuation of noise modes with short wavelengths.

» Coupling of the geophones to the hard surfaces represents a problem for the amplitude
stability of adjacent traces, which is very important to support noise attenuation.
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Our best Present Survey Design Solutions

LC@ a 03 D1 480x560 D3 375x550 D5 450x450 D6 360x510
Receiver lines per swath 16 20 20 20
Live channels per receiver line 1568 1320 1080 1088
Total channels per patch 25088 26400 21600 21760
Receiver Line Interval 480 375 450 360
Receivers Interval 10 125 15 15
In-Line Fold 14.0 15.0 18.0 16.0
Source points per salvo 6.0 5.0 5.0 4.0
Source point Interval 80 75 90 90
Source Line Interval 560 550 450 510
X-Line Fold 5.0 10.0 10.0 10.0
Binsize (In-Line) natural 3 6.25 75 75
Binsize (X-Line) natural 40 375 45 45
Full Fold natural bin 112.0 150.0 180.0 160.0
Inline to Crossline Ratio 049 0.45 0.55 044

Legacy 849 m Maximum minimum offset 738 666 636 624
Maximum offset (In-Line). 7835 5243 8092 8152

Legacy 5962 m Maximum offset (X-Line). 3800 3712.5 4455 3555
Maximum Offset. 8707 9040 9237 8893
Source points / Km® 22 24 25 22
Receiver points / Km’ 208 213 148 185
Max. legacy 373000| Densidad de Trazas / km" 560,000 640,000 333,333 474074

| hannels Required for Operation 42228 41250 34 408 34 408
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Survey DeS|gn Solutlons Compressive Sensing (CS)

f(t)=sin(1394nt)+sin(32667wt)  “A key touch-tone phone”

= signal, b = random sample

Wikipedia: Compressed sensing is a signal processing technique for
efficiently acquiring and reconstructing a signal, by finding solutions to
underdetermined linear systems. This is based on the principle that,
through optimization, the sparsity of a signal can be exploited to recover it
from far fewer samples than required by the Shannon-Nyquist sampling
theorem.

CS has many applicactions in communications, space based imaging, medical
imaging, ..., and recently seismic acquisition (Herrmann, et al, 2007-2012, Jiang, et
al, 2017 SEG, etc.)

Premises:

* Sparseness property of signal in some domain

+ Incoherence isometric property sufficient for sparse signals.
\N
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Cleve's Corner, MathWorks, "Magic" Reconstruction: Compressed Sensing.
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onventional vs Option 1 (operational Parameters)

CS1 operational
effort executed in the field

Conventional
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U ption 1 W/ reconstruction)

Reference Design CS1 effort executed  CS Optionl after CS

(slide 25) in the field reconstruction
D3 375x550

Receiver lines per swath

20

Live channels per receiver line

1320

Total channels per patch

26400

Receiver Line Interval

375

Receivers Interval

12.5

Source point Interval

75

Source Line Interval

550 550

Binsize (In-Line) natural

6.25 6.25

Binsize (X-Line) natural

37.5 18.75

Full Fold natural bin

150.0 210.0

Inline to Crossline Ratio

0.45 0.63

Maximum minimum offset

667 667

Maximum offset (In-Line).

3243 8243

Vaximum offset (X-Line).

37125 523125

Maximum Offset.

9040 9762

Source points / Km’

24 48

Receiver points / Km®

213 213

Trace Density / km®

640,000 1,792,000

Channels Required for Operation

41,290
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SWATH CS Option2 — Operatlonal Parameters

CS2 operational
effort executed in the field

Application and effects of swath 3D technique in marine
carbonates in western Sichuan Basin, W. Xiaoyang et al 2017

Swath 3D survey in | Conventional 3D

2016 survey in 2015 Receiver lines per swath

Geometry type Orthozonal Orthosonal Live channels per receiver line

Geometry mode 241483560 22LESHIR Total channels per paich
Receiver channels 13440 9680 Receiver Line Interval
Fold 20X 12 1x11 Receivers Interval

Tnline bin size (m) 125 125X25 Source point Interval

123 5 Source Line Interval
Receiver line sp: Binsize (In-Line) natural
eceiver line spacing
(m) Binsize (X-Line) natural

Group interval (m)

Source spacing (m) 5 5 Full Fold natural bin
Source line spacing (m) > ) Inline to Crossline Ratio
[Max cross-line offset (m 5 ; Mazximum minimum offset
Max offset (m) - 101807 Maximum offset (In-Line).

025 08 X -
Aspect ratio Maximum offset (X-Line).

Trace densm 1536000 387200
(Trace/km’)

Maximum Offset.

Source points / Km® 22

Receiver points / K’ 185

Densidad de Trazas / km® 379,259

Channels Required for Operation 26,588
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(slide 27)
D6 360x510

Imaging/Model

Other Considerations

CS2 effort executed
in the field

Receiver lines per swath

20

Live channels per receiver line

1088

Total channels per patch

21760
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Option 2 (w/ recomstruction)

CS Option2 after CS

reconstruction

Receiver Line Interval

360

Receivers Interval

15

Source point Interval

90

Source Line Interval

510

Binsize (In-Line) natural

7.5

Binsize (X-Line) natural

45

Full Fold natural bin

Inline to Crossline Ratio

Maximum minimum offset

Maximum offset (In-Line).

NMaximum offset (X-Line).

Maximum Offset.

Source points / Km®

Receiver points / Km’

185

race Density / km®

474,074

1,517,037

hannels Required for Operation

34,408

53,176
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Design for Foothill Environment,
M. Luo et al 2017
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How CS can help? - Conclusions
Implementation of CS technique is intended to deliver uplift in data quality rather than

reducing the source and receiver effort of the surveys. Reconstructed gathers shall provide
the spatial sampling to effectively remove the typical noise Andean Thrust Belts seismic data.

- ST

It is expected that CS technique also shall provide improved image of the complex near mid
geology to support model building.

Compressive Sensing (CS) acquisition proposals allow the implementation of WAZ acquisition
or implementation of NAZ acquisition with smaller receiver line intervals.

Design options consider CS acquisition with both irregular source and receiver locations. It is
assumed that reconstructed gathers are generated for reference nominal design with half the
IL bin size and half the XL bin size.
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