PSGeostatistical Integration of Multiscale Data to Construct the Hunton Group GeocellularModel:
Upscaling Logs and Downscaling Seismic Impedance Volumes*

Benmadi Milad*, Abdulmohsen AlAli, Roger Slatt’, and Kurt Marfurt?

Search and Discovery Acrticle #42255 (2018)**
Posted August 6, 2018

*Adapted from poster presentation given at 2018 AAPG Annual Convention & Exhibition, Salt Lake City, Utah, May 20-23, 2018
**Datapages © 2018 Serial rights given by author. For all other rights contact author directly.

Geology, University of Oklahoma, Norman, Oklahoma (benmadi.milad@ou.edu)
2AASPI at the University of Oklahoma, Norman, Oklahoma

Abstract

The Hunton Group on the carbonate ramp often exhibits highly variable porosity and lithology resulting in heterogenous production. The
generation of an accurate geocellular model requires upscaling of sparse porosity logs followed by their integration with denser seismic
impedance volumes. The integration of multi-scalar data consisting of core, logs, and seismic data to construct a 3D geocellular model remains
an ongoing challenge. Seismic data provide laterally dense but vertically low resolution, “soft” estimates of lithology and rock properties. In
contrast, log data provide corresponding “hard” estimates that are laterally sparse but exhibit high resolution. To bridge this gap in scales, we
develop a workflow to upscale well log and core data, and downscale seismic impedance estimates, resulting in an integrated gridded reservoir
model with reduced uncertainty.

Our workflow begins with principal component analysis (PCA) of electric logs followed by self-organizing map (SOM) to construct
electrofacies logs. We then corroborate the geologic interpretation of the electrofacies predictions using thin sections and borehole images.
Porosity logs are correlated with core porosity measurements. Lithology and porosity logs are then upscaled to the size at which the vertical
heterogeneity of log properties can be preserved by comparing the logs before and after upscaling. We then construct a vertical variogram from
the upscaled well logs and a horizontal variogram from the downscaled acoustic impedance volume.

To populate the 3D volume we (1) establish seismic impedance attribute which correlate to the electrofacies and porosity to design the
horizontal variograms for the 3D lithology and porosity models, (2) construct the relationship between the acoustic impedance and lithology
and porosity logs at well locations, (3) perform a 3D seismic inversion of acoustic impedance volume, (4) downscale (laterally interpolate) the
inverted prestack acoustic impedance volume computed at the seismic bin size resolution to geocellular model grid size, (5) create horizontal
variogram maps from the downscaled seismic acoustic impedance, and (6) obtain the horizontal variogram parameters and substitute them into
lithology horizontal variogram.


mailto:benmadi.milad@ou.edu

The seismic data helps to design the geocellular horizontal variograms of the lithology and porosity 3D models. We illustrate the value of this
workflow through application to a Hunton Group reservoir in the Cherokee Platform, Oklahoma, USA.
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Figure 10. Cross plot between the effective porosity and the acoustic impedance colored with Figure 11. A) Angle dependent wavelets extracted for well to seismic tie and inversion. Amplitudes at time (top) and
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Eic ure 13. Proposed workflow to build high heterogeneity lithofacies, porosity, and permeability 3D models by integrating core, logs, and seismic data.






