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Abstract 

 

The Hunton Group on the carbonate ramp often exhibits highly variable porosity and lithology resulting in heterogenous production. The 

generation of an accurate geocellular model requires upscaling of sparse porosity logs followed by their integration with denser seismic 

impedance volumes. The integration of multi-scalar data consisting of core, logs, and seismic data to construct a 3D geocellular model remains 

an ongoing challenge. Seismic data provide laterally dense but vertically low resolution, “soft” estimates of lithology and rock properties. In 

contrast, log data provide corresponding “hard” estimates that are laterally sparse but exhibit high resolution. To bridge this gap in scales, we 

develop a workflow to upscale well log and core data, and downscale seismic impedance estimates, resulting in an integrated gridded reservoir 

model with reduced uncertainty. 

 

Our workflow begins with principal component analysis (PCA) of electric logs followed by self-organizing map (SOM) to construct 

electrofacies logs. We then corroborate the geologic interpretation of the electrofacies predictions using thin sections and borehole images. 

Porosity logs are correlated with core porosity measurements. Lithology and porosity logs are then upscaled to the size at which the vertical 

heterogeneity of log properties can be preserved by comparing the logs before and after upscaling. We then construct a vertical variogram from 

the upscaled well logs and a horizontal variogram from the downscaled acoustic impedance volume. 

 

To populate the 3D volume we (1) establish seismic impedance attribute which correlate to the electrofacies and porosity to design the 

horizontal variograms for the 3D lithology and porosity models, (2) construct the relationship between the acoustic impedance and lithology 

and porosity logs at well locations, (3) perform a 3D seismic inversion of acoustic impedance volume, (4) downscale (laterally interpolate) the 

inverted prestack acoustic impedance volume computed at the seismic bin size resolution to geocellular model grid size, (5) create horizontal 

variogram maps from the downscaled seismic acoustic impedance, and (6) obtain the horizontal variogram parameters and substitute them into 

lithology horizontal variogram. 

 

mailto:benmadi.milad@ou.edu


The seismic data helps to design the geocellular horizontal variograms of the lithology and porosity 3D models. We illustrate the value of this 

workflow through application to a Hunton Group reservoir in the Cherokee Platform, Oklahoma, USA. 
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Figure 2. Map of Oklahoma showing geologic provinces and 
the Hunton Group distribution (Northcutt, 2002). Yellow dash 
lines show the boundaries of the Hunton Group. 
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the outcrop in the rectangular simples. 
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Figure 3. Hunton Group stratigraphic column in central Oklahoma with gamma ray (GR) and resistivity (R) type 
logs (Fritz and Medlock, 1994; Milad 2017). 
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Figure 4. Samples of the Hunton core from Roberson A#l well in Pottawatomie 
County, Oklahoma. The core is highly brecciated and crystallized due to the 
karstification creating fractures. (Milad et aI., 2018; Milad and Slatt, 2017). 
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Figure 5. multilinear regressions for Well-S in for the Hunton reservoir. Gamma ray is in red, 
bulk density is in red and P sonic log is in purple. The black curve in the last column is the 
actual 5 wave velocity and the blue curve is the calculated 5 wave velocity. 

t 

.. 

iv. Prestack Seismic and Log Data 

... 
•• 

Figure 7. Locations of the logs inside 
the seismic polygon . Colorful circles 
are the type of logs at well locations 
with their respective names. Well logs 
are available for the pre-stack seismic 
inversion. 
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Figure 8. Variance versus the numbers of clusters. Sum of square within clusters (SSW) shows the 
variance in each cluster. Sum of square between clusters (SS6) shows how each cluster differs from 
one another. The "elbow" shape indicated by the red circle represents the optimal number of clusters, 
3, where there are small variance within each cluster (SSW) and large variance between clusters (SS9). 
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Figure 9. lithofacies classification in Well# 12 using well logs, borehole image, and thin sections. Self 
organizing map was used to cluster logs data. 
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Figure 11. A) Angle dependent wavelets extracted for well to seismic tie and inversion. Amplitudes at time (top) and 
frequency (bottom) response are shown. B) Inverted P impedance of E-W cross section at the location of Well- ll. 
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Figure 4. Samples of the Hunton core from Roberson AU well in Pottawatomie 
County, Oklahoma. The core is highly brecciated and crystallized due to the 
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7- CONCLUSIONS 
1) The value of this work is to illustrate multi-scalar data integration workflow to construct high resolu tion geocellular 

model, which helps decide the horizontal well landing spots. 
2) Upscaling well logs and downscaUng seismic data are used to construct high heterogeneity lithofacies, porOSity, 

and permeability models. 
3) Vert ical variograms were constructed from the upscaled well logs while horizontal variograms were constructed 

from the downscaled acoustic impedance inversion volume. 
4) Acoustic impedance was correlated to the lithofacies and porosity. 
5) The seismic data helped to design the geocellular horizontal variograms of the lithology, porOSity, and permeability 

3D models. 

8- FUTURE STUDY 
1) To correlate the porosity and permeabil ity models to the production data. 
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7- CONCLUSIONS 
1) The value of this work is to illustrate multi-scalar data integration workflow to construct high resolution geocellular 

model, which helps decide the horizontal well landing spots. 
2) Upscaling well logs and downscaling seismic data are used to construct high heterogeneity lithofacies, porosity, 
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