Spain – Offshore Canary Islands – Tarfaya Basin: Implications of Sandia-1X Well Results in the Hydrocarbon Exploration Offshore Morocco*

L. Garcia Del Olmo

Search and Discovery Article #30593 (2018)**
Posted December 17, 2018

*Adapted from poster presentation given at 2018 AAPG Europe Regional Conference, Global Analogues of the Atlantic Margin, Lisbon, Portugal, May 2-3, 2018

**Datapages © 2018. Serial rights given by author. For all other rights contact author directly. DOI:10.1306/30593DelOlmo2018

1Repsol Exploración, Madrid, España (lgarciado@repsol.com)

Abstract

There has been a reactivation of hydrocarbon exploration activity in the Morocco offshore in recent years, mainly targeting Jurassic and Cretaceous objectives. Most of these wells have been unsuccessful due either to lack of reservoir (target: clastic reservoir), or to the presence of biodegraded oil (target: carbonate reservoir). Well Sandia-1X (2015), is located 60km east of Fuerteventura, between the Canary Islands and the Moroccan coast in a water depth of 880m. It reached total depth of 3093m MD in the Paleocene-Lower Eocene. It is the only well drilled in Spanish territorial waters of the Tarfaya Basin to date. Sandia-1X well is situated in a special structural position within the Tarfaya Basin, to the South of the Essaouira Basin and the Agadir Canyon. The presence of the Canary Islands may play a key role retaining the sand prone turbidite deposits. Sandia-1X well penetrated the entire Tertiary section with good Miocene-Eocene sand packages that no other well had found so far; hence, increasing the chance of reservoir presence in the Morocco offshore.

References Cited

Evidence Of Large Channelized Miocene Turbiditic Systems

Primary target Miocene-Paleocene turbidites: good reservoir water bearing gas shows
- Miocene sand interval: gross reservoir is about 85m TVD with average porosity of 19%.
- Base Oligocene sand interval: gross reservoir is about 25m TVD with average porosity of 18.5%
Secondary target Paleocene turbidites: consist mainly on limestone and is of very low reservoir quality

Sand Distribution In Canary-Morocco Offshore

Canary Islands: natural barrier preventing sediments travel deeper into the basin.
- Tan Tan delta: important clastics supply area
- Salt tectonics: controlling fairways and depocentres
- Contour currents: distributing southwards sediments from Agadir Canyon

Key factors controlling sand distribution in Canarias 3D area

References
J. ADORSA, et al. (2003), Geologic evolution of the Canary Islands of Lanzarote, Fuerteventura, Gran Canaria and La Gomera and comparison of landforms at these islands with those at Tenerife, La Palma and El Hierro, Marine Geophysical Researches. Geophysics of the Canary Islands.