Numerical modeling of inversion and reactivation of pre-existing faults induced by Eocene-Miocene tectonic stress fields is presented. Our goal is to reconstruct stress evolution and to investigate the recorded tectonic inversion events in the western Barents Sea during Eocene and Miocene. We used a finite-element numerical code, ANSYSTM, to simulate stress and fault slip patterns based on two 2-D thin plate modeling setups. Following previous works, we assumed two major regional inversion events: dextral megashear plate margin in Early Eocene (Model 1) and NW-SE Atlantic ridge push starting in Miocene (Model 2). The results obtained in Model 1 suggest that the interior of the western Barents Sea was not severely influenced by Early Eocene North Atlantic opening/shearing. The results suggest that Early Eocene sea floor spreading caused stress partitioning along the Senja Fracture Zone. The observed inversion structures may be related to local effects. The results of Model 2 appear to be in agreement with the observed NW-SE contraction, expressed as folds and reverse faults in the study area (e.g. Ringvassøy – Loppa, Bjørnøyrenna, Leirdjupt and Asterias fault complexes). Results of two models suggest presence of compressive structures along the major fault complexes of the western Barents Sea during Miocene but do not favor the development of inversion structure during Eocene.

Selected References

Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

Muhammad Armaghan Faisal Miraj¹⁻³, Christophe Pascal¹, Roy H. Gabrielsen² and Jan Inge Faleide²

Muhammad.faisalmiraj@rub.de

(1) Institute of Geology, Mineralogy und Geophysics, Ruhr University Bochum, Germany
(2) Department of Geosciences, University of Oslo, Norway
(3) Institute of Geology, University of the Punjab, Lahore, Pakistan
Outline of presentation

Phase I
- Introduction of study area
- Development of structural features
- Multi-stage basin inversion

Phase II
- Methodology & tool
- Results
- Comparison
Formation of Geological Structures

- **Carboniferous - Permian**
- **Late Jurassic – Early Cretaceous**
- **Late Cretaceous - Paleocene**

Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

Inversion events in the western Barents Sea

Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

Introduction

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Methods & Tools</th>
<th>Numerical Modelling</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Early Eocene North Atlantic opening

Early Eocene pre breakup

Post Eocene extension
Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Objectives</th>
<th>Methods & Tools</th>
<th>Numerical Modelling</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

- To investigate the causes and effects of Cenozoic inversion events in the western Barents Shelf.
- To predict stress patterns for tectonic inversion during Early Eocene and Miocene.
Numerical Modelling Approach

• With the purpose of calculating horizontal stress patterns in the study area, 2D linear elastic models involving contact elements were generated using the ANSYS Workbench.
Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

Boundary conditions

Model 1: Early Eocene (Tsikalas et al. 2002)

Model 2: Miocene to recent (Doré and Lundin 1996)

Material properties

Young’s Modulus (E) 100 & 60 GPa

Poisson’s ratio 0.25

Friction coefficient (µ) 0.1

Normal stiffness (FKN) 1
Meshing

Models mesh with refinement along the faults with \(\sim 20000 \) triangular elements with mid-nodes and approximately \(\sim 3000 \) contact elements.
Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

Introduction Objectives Methods & Tools Numerical Modelling Results Conclusions

Results (Model 1)

Early Eocene

Model 1

![Model 1 Diagram]

- Sigma 1
- Sigma 2
- Sigma 3
Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

Results (Model 1)

Early Eocene

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1 Km
Results (Model 2)

Miocene

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β 1</td>
<td>β 2</td>
<td>β 3</td>
</tr>
</tbody>
</table>

Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Objectives</th>
<th>Methods & Tools</th>
<th>Numerical Modelling</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Model 2

- Blue: Sigma 1
- Green: Sigma 2
- Red: Sigma 3

N
Numerical Modelling of Cenozoic basin inversion of the western Barents Shelf

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Objectives</th>
<th>Methods & Tools</th>
<th>Numerical Modelling</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geological Period</th>
<th>Western Central Province</th>
<th>Eastern Central Province</th>
<th>Eastern Province</th>
<th>West</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenozoic</td>
<td>Lapp High</td>
<td>Trans-Finnmark Fault Complex</td>
<td>Hoop Fault Complex</td>
<td>Miasta Fault Complex</td>
<td>Thor Ivenren Fault Complex</td>
</tr>
<tr>
<td>Oligocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A comparison of present study with previous studies.

Previous investigators results

Present study results
• Model 1 shows no pronounced stress rotations and consequently succeeds in predicting that the study area has no direct effect of NE Atlantic opening during Early Eocene.

• However, simulated stress patterns suggest inversion along major fault complexes during Miocene (Model 2).
Thank you for your attention