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Abstract 
 
From published and unpublished sources, eleven seismic images have been compiled across the Indo-Australian/Sunda Plate margin from 
Sumatra, where a subduction margin is generally recognized, through the Andaman Islands (India), to Myanmar where the nature of margin is 
subject to debate. Integrating the seismic images, earthquake data, GPS velocities, volcanic K-Ar ages with available models and worldwide 
analogues gives the following insights into the Indo-Australian/Sunda plate margin in space and time. 
 
Present day: 
 

• Plate margin shows transition(s) from subduction to transform from south to north 
• Central Andaman Basin is a trench-linked strike-slip fault pull-apart basin  
• Recent volcanism seen at Barren Is, Narcondam Is and in Central Myanmar could perhaps be transform margin/slab tear related. 

 
In the Past: 
 

• Plate margin was wholly subduction to +/- 25Ma (?) 
• Subduction may have ceased in North Andaman-Irrawaddy region +/- 25Ma and in North Myanmar +/- 13.5Ma 
• Alcock and Sewell Rises may represent Early Miocene episode of trench-linked strike-slip fault pull-apart sea floor spreading (Curray, 

2005) 
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From Indonesia to Myanmar: A Review of Seismic 
Images Across the Indo-Australian/Sunda Plate Margin: 

The Anatomy of a Subduction Zone in Space & Time 

• Observations: 

- Seismic lines (xll) 

- Earthquakes & GPS velocities 

- Faults & spreading 

- Volcanic rock K-Ar ages 

• Models & Global Analogues 

• Integration & Insights 



 
 
  Seismic line location map with volcanoes, major faults (including deformation front) and volcanic arc annotated. Of particular note 
  are the Sagaing and Semangko dextral strike slip faults that appear to be connected via Central Andaman Basin that it is thought 
  has seen sea floor spreading since the Pliocene oblique to the deformation front. The black arrow shows the Indo-Australian/Sunda 
  plate relative motion. 
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        Introduces qualitative features (tectonic features, arrows) and quantitative parameters (tectonic features and box). Subduction 
        margin with top oceanic crust weakly imaged on seismic. 

1. Central Sumatra 
Shulgin et al (2013) 
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          Introduces observation of landward vergence (LV) and seaward vergence (SV). Subduction margin with top oceanic crust 
          weakly imaged on seismic. 
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2. North Sumatra 
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        Subduction margin with top oceanic crust weakly imaged on seismic but supported by earthquake hypocentres. 

3. Nicobar - N Sumatra 
Singh et al (2012) 
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          Singh et al, 2013, line three model illustrates the subduction margin interpretation. 

EAGE 

3. Nicobar - N Sumatra 
Singh et al (2013) 
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   This line shows a series of strike slip faults and the Sewell Rise high plus LV folds. South Andaman is thought to be a subduction 
   margin but seismic record length insufficient to image top oceanic crust and most of earthquakes related to a strike slip fault.
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4. South Andaman 
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   Central Andaman South line exhibits different attitude of Indian plate and shape of accretionary prism to South Andaman line but  
   still thought to be a subduction margin. Note the Sewell Rise high feature with thin sedimentary cover. 
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5.Central Andaman South 
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   Singh at al., 2015, line 5 model illustrates the subduction margin interpretation. Note the oceanic crust of the Central Andaman 
   Basin, which is perhaps better illustrated in the next slide. 

EAGE 

5.Central Andaman South 
Singh et al (2013) 
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           Line 6 goes obliquely across the Central Andaman Basin spreading centre. A seismic line to the west was unavailable so 
          quantitative parameters are not shown. 
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6.Central Andaman North 
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         Line 7 is a composite line. Note the form of the Alcock Rise high, which is similar to that of the Sewell Rise. 
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7. North Andaman 
Roy (1992) & Spectrum 
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   Goli and Pandey’s (2014) gravity model along a line of section including the eastern segment of line 7 shows a subduction margin 
   perhaps with a more steeply subducting slab plus the Alcock Rise, which is modelled as relatively high-density igneous rock. 
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        Line 8 is a composite line. Similar tectonic features are identified perhaps including a paleo volcanic arc high. Transition to 
        transform margin? 

EAGE 

8. Coco Island 
Rangin et al (2013) & Total Myanmar 
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     Line 9 is another composite. Note in the fore-arc basin uplift starting approximately 10Ma ago and extensive erosion both in 
     the fore-arc and the accretionary prism. Note also the identification of the Yadana High as a possible paleo volcanic arc high. 
     Transition to transform margin? 
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9. Preparis Island 
Total Myanmar & Zuchmeyer et al (2015) 
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   Line 10 only has partial seismic coverage so is illustrated via a Google Earth elevation profile. The Forearc High is identified with 
   the Indo-Burman Range, which of course is above sea level. The Volcanic Arc as identified is on trend with Mt Popa. Transform 
   margin? 
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   Line 12 only has partial seismic coverage so is illustrated via a Google Earth elevation profile. The Forearc High is identified with  
   the Indo-Burman Range, which of course is above sea level. The Volcanic Arc as identified is on trend with Mt Popa. Transform 
   margin? 
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11. North Rakhine 
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   Acharyya’s (2015) schematic composite cross-section illustrates the model applicable to South and North Rakhine (and North 
   Myanmar). Note that a subducting Indian Plate is shown but is question marked and a Volcanic Arc with Miocene and Quaternary 
   volcanics is identified. 
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   Table of qualitative subduction margin features show some consistency for lines 1-5. Where the attitude of the Indian Plate is 
   dipping the accretionary prism is tapered, where it is more flat the prism is box shaped. It is not clear whether attitude of the Indian 
   Plate is indicative of the subduction process or is simply indicative of the Indian Plate topography/ridges. 
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Table of quantitative subduction margin parameters shows: 
 
(i) Azimuth of Indian Plate relative to trench/arc starting at 60 deg for line 1 and reducing to +-0 

deg for lines 7-9, thereafter increasing and then decreasing. 
(ii) Age of Indian Plate increasing form 50Ma in the south to 110Ma in the north. There has been 

some suggestion in the literature that older oceanic crust being cooler and denser could lead 
to steeper subducting slab and a reduced DF to VA distance. 

(iii) DF to VA distance does indeed exhibit a general decreasing trend from Sumatra to North 
Andaman but with numerous variables, no firm conclusion should be drawn. In the Rakhine, 
the accretionary wedge expands due to increased sediment supply post-Shillong Plateau 
uplift in the Pliocene. The pre-Pliocene DF was probably along the line of the Kaladan fault 
and if this point of reference is used then DF to VA remains constant. 

(iv) DF trench depth generally decreases from south to north reflecting increasing Bengal Fan 
sediment input. 

(v) For lines 1-5 trench sediment thickness, though variable, seems to have a clear relationship to 
Indian Plate attitude/wedge shape. Trench sediment thickness is greater with dipping plate 
attitude and tapered wedge shape and less with flat plate attitude and box wedge shape. 

 
From the two tabulations of seismic features/parameters, three zones have been identified: (1) 
Subduction zone; (2) Trench parallel shear zone and (3) Complex zone with expanding wedge. To 
understand more about this plate margin additional data needs to be considered.  
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Earthquakes: 
Indonesia to Myanmar 
(Hall & Spakman, 2015) 
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boundary. In North Myanmar seismicity 
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                  Earthquakes cross-section North Sumatra shows active subduction with seismicity beneath volcanic arc at 115km. 
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Earthquakes: 
North Sumatra (England et ai, 2004) 
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   Kundu and Gahalaut (2010) presented earthquakes cross-sections, which were interpreted to show active subduction in the Central 
   Andaman zone, no active subduction in the North Andaman-Irrawaddy zone and active subduction in the South Rakhine zone. Note 
   for the Central Andaman zone higher seismicity and more steeply subducting slab and for South Rakhine zone lower seismicity 
   and more gently subducting slab. 
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Earthquakes: 
Andaman - South Rakhine (Kundu & Gahalaut, 2010) 
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   Steckler et al (2016) used GPS velocities in North Myanmar at approx. 24 deg north to show India-Sunda relative plate motion  
   partitioned between fault normal and fault parallel (13-17mm/yr fault normal plate convergence, 41mm/yr fault parallel dextral 
   strike slip). Although the predominant motion is fault parallel, the fault normal motion indicated there is active subduction. 
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GPS Velocities: 

North Myanmar 24°N (Steckler et ai, 2016) 
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Interpretation: India-Sunda 
relative plate motion partitioned 
between fault normal and fault 
parallel: 
• 13-17mm/yr fault normal 

plate convergence 
• 41mm/yr fault parallel dextral 

strike slip 
Active subduction, 
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    Kundu and Gahalaut (2013) also used GPS velocities in North Myanmar at approx. 25 deg north to show all India–Sunda relative
    plate motion partitioned between the Churachandpur-Mao Fault and the Sagaing Fault dextral strike-slip faults. The interpretation 
    of no active subduction was supported by the interpretation of deep earthquake as intra-plate type with nodal planes oblique to 
    strike of Indo-Burmese Wedge (maximum principal stress NNE-SSW). Note how C-M dextral strike-slip fault is extended at depth
    along what could be interpreted as a subducting slab. 
 



 
 
   Summary map of fault, spreading and volcanic K-Ar ages: State offsets and then go through faults and spreading box comments. 
   It appears that there could have been 80-120km of movement along the whole Sagaing-Semangko system with corresponding 
   sea floor spreading in the Central Andaman basin in the last 4Ma. The question arises of how much fault movement took place 
   before this and was there corresponding sea floor spreading? In the last 4Ma a significant proportion of the Indo-Australian/Sunda 
   plate relative motion has been along the Sagaing-Semangko system.  

AAPG- EA~. 

Faults, preading 
& Volcanic K-Ar Ages 

Faults 
Sagaing 
Age: As old as 32Ma(1) or 22Ma(2) 

Offset: As much as 460km (1) 

Current Rate: 20mm/yr»> 20km/1Ma 
SemangkoUMentawail 
Age: ??? 
Offset: 20/100km in 5Ma l3J? 
Current Rate: -25mm/yr»> - 25km/Ma(4) 

Spreading 
Central Andman Basin 
Age: 0-4Ma(5) 

Offset/Width: 120km(5) 

Alcock + Sewell Rises ?(1) 

Age: +-20Ma(1) 

Offset/Width: 350km? 

Sources: 

(1) Curray (2005) 

(2) Searle et al (2007) 

(3) Sieh & Natawidjaja (2000) 

(4) Genrich (2000) 

(5) Kamesh Raju et al (2004) 

}30km/Ma 

} LlAge>10Ma? 
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Faults, Spreading 
& Volcanic K-Ar Ages 

Volcanic K-Ar Ages 
Sumatra 
Long lived volcanism but discrete periods 
some more active than others 
Alcock Rise 
East of volcanic arc. Oceanic basalt(3)? 
North Andaman 
Recent volcanism not subduction related? 
Irrawaddy 
Paleo volcanic arc indicating that 
subduction ceased 25Ma ago? 
North Myanmar 
Paleo volcanic arc indicating that 
subduction ceased 13.5Ma ago with recent 
volcanism not subduction related(4)? 

Sources of K-Ar ages: 

(1) Sumatra - Crow (2005) 

(2) Irrawaddy - Total Myanmar 

(3) Alcock Rise - Curray (2005) 

(4) North Myanmar - Lee et al (2016) 

ItVolcanic K-Ar AgE!Sl 



 
 
       Plate tectonic models, including Richard’s et al (2007) illustrated, show that specifically north of Andaman region there has 
       been a change of orientation from oblique to parallel of the Indian Plate relative to the subducting margin. 

AAPG- EA~~. 
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Plate Tectonic Model: 
Richards et al (2007) 

Observations: Subducting margin @45Ma is NW-SE 
but by 25Ma is more-or-Iess N-S north of Sumatra. 
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    Lee and Lawver’s (1995) graph illustrates this quantitatively in more detail. Read through the box. The question arises whether
    there could have been an early period of sea floor spreading associated with low angles of convergence. Note that Allen at el 
    (2008) identified periods of uplift from rock studied from South Andaman Is. Except for recently, periods of uplift are associated 
    with higher angles of convergence and perhaps active subduction. 
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Plate Tectonic Model (& Uplift History): 
Lee & Lawver (1995) (& Allen et al (2008)) 
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Interpretation: Angle of 
convergence was +-100 0-
10Ma & 20-3SMa. Andaman 
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convergence. Subduction 
may have only occurred 
along the entire Indo­
Australian/Sunda plate 
margin with higher angles 
of convergence. 
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Figure 18. A compari son between in­
dian convergence history (after Lee and 
Lawver, 1995, and Guillot et al.. 2(03) 
and the upl ift and sed imentation history 
of the roc ks studied from South Anda­
man Island. 
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        One model for the Indo-Australian/Sunda plate margin comes from Woodcock’s (1986) tectonic setting of major classes of 
        transform faults. AOI is highlighted in the red box. 
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Model for the Indo-Australian/Sunda Plate Margin: 
Frankel & Owen (2013) & Woodcock (1986) 

crust 

Indent-linked 
Strike-slip fault 

Boundary 
transform 

Ridge 

Trench 

,--- Back-arc 

Stllike-sllip lault 

OCleanki crust Ridge-transform 

Figure 2 Tectonic setting of major classes of transform faults. Adapted from Woodcock, N., 1986. The role of strike-slip fault systems at plate 
boundaries. Philosophical Transactions of the Royal Society 317, 13-29. 



 
 
         Zoom of red box identifies key features in the context of Indo-Australian/Sunda plate margin. Central Andaman Basin is 
         trench-linked strike slip fault pull-apart basin. Note blue box comments. Woodcock’s (1986) examples include Semangko, 
         Sagaing and Andaman Sea separately and none of the other examples involves a pull-apart basin with spreading. 
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Model for the Indo-Australian/Sunda Plate Margin: 
Frankel & Owen (2013) & Woodcock (1986) 

• Continuous subd uction zone 

• Trench-linked strike slip faulting (TLSSF) 

• TLSSF pull-apart basin with spreading 

Central Andaman Basin: 

Sagaing Fault 
Trench-linked strike slip fault 

pull-apart basin? Trench-linked 
tr~~,..,_.~ Strike-slip fault 

Sumatra: Semangko System 

Indian Plate 
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   Another model for the Indo-Australian/Sunda plate margin comes from Bilich et al’s (2001) subduction to strike-slip transitions. 
   Sumatra is listed as a two-plate convex region as are the Central Aleutians, which I would like to compare with Sumatra. 

40 

o 
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Subduction to Strike-Slip Transitions: 
Bilich et al (2001) 

40 

Filure I, LocaLions of the 30 subduction-to-strilce-slip transition regions. numbered os in Table I. Regions 1-24 
are two-plate transition regions; solid boxes indicate convex trench geometry, while dashed boxes indicate toncave 
trench geometry. Regions 2S-30 are triple junctions, indicated by circles. Note that toClvex and concave ttansition 
regions often occur in close geugtllphic prm:imily. 
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Region Plates'" RcsionName 

Two-Plate Concave Regions: 

I ..w< sooth Georgil 
2 ,..,..h IN Trench 
3 ",-po Santa Cruz-New lidlfldes 
4 no-po K.amchltka , oo-po southwC$lern Ahw :1 
6 00-0. Northern Domincan Republic 
7 ~-ph L""" • "1" Hikurangi 
9 eu-in wcslem Himalayas 
10 .r~u souLbem Cwpalllians 

Two-Plate Convex Regions: 

11 na-pc Cer!tIaI AleulUUlS 
12 ca-na north Haili 
13 CI-f1a l.es5cr Anli lk:$ 
14 sa-sc nonh SCOIia 
1 S sa-an South Scotil· 
16 pc-ph north Mariana 
11 au-pc south Soloman Islands 
18 au-pc south Vanuatu 
19 ca-sa Trinidld-northem South America· 
20 &U1K" Samoa Islands-Tonp 
21 PCl'h Guam 
22 eu-ph Mindanao 
23 au-pc southern New Zealand 
24 au-eu Sumatra 

Triple Junction Regions: 

25 eU-Iu-pc Banda 
26 au·nb-sb New Guinea 
27 sb-ss-pc New Britain 
28 SS-PC-lU Woodlark 
29 na-an-sa southern South America 
]0 Ca-nz..1UI COCOI-Panama 

·Plate labels an: as follows: ph, Philippines; ca, Caribbean, au. Australian; pc, Pacific. CU, Eurasian: af. African; nl, 
North America; sa, South America; an. AntarCtiC; In. Indian; nb, North Bismark; sb, South Bismart; sa. SoIomoo Sea; sc, 
Scotil; and nz, Nazca 



 
 
    The Central Aleutians shows a transition from subduction zone to transform zone from east to west as the Pacific Plate motion
    changes from orthogonal to parallel. No trench-linked strike-slip faulting is identified along the Aleutian Volcanic Arc and 
    there is no pull-apart basin but earthquakes follow the same pattern seen going from Sumatra to the Andaman Is and a sliver 
    plate can be interpreted in strike-slip zone in the west. 
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Two Plate Convex Region/Open Corner Analogue 
Central Aleutian: Bilich et al (2001)/Mann & Frohlich (1999) 

° Transition from subduction zone to 

transform zone 

° No trench-linked strike slip faulting 

along volcanic arc 

° No TLSSF pull-apart basin 

TRANSLA ON 
WESTWARD TRANSLATION 

- ALASKA 

Scholl (1999) 

• 0 , 

o t , 

• 

<70km 
70-350km ' 0 



 
 
   The USGS slab models for Alaska-Aleutians and Sumatra-Java and similar and they are both truncated approaching the respective
   transform zones. 
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Two Plate Convex Region/Open Corner Analogue 
USGS Slab Models for Subduction Zones 

65' .--=r"""" =-~"""""--rc-.,,,--,-;:::r---.,----=~ r::----::--;--, 

Observations: Slab models truncated 
approaching transform zone 

http:// ea rth qua ke. usgs.gov / data/51 a b/ #m ode Is ., 
130' 



 
 
Richards et al (2007) slab model goes further and shows separate Sunda Arc & Burma Trench subduction zones. No subduction zone 
shown in the North Andaman-Irrawaddy area and perhaps in North Myanmar. In the North Andaman-Irrawaddy area sub-horizontal 
tear in the slab has been suggested by Kundu and Gahalaut (2010). This may give an idea of what happens to a slab in a subduction 
to strike-slip transition with time. 

i i 
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Sunda Arc & Burma Trench Slab Model: 
Richards et al (2007) 

Observations: Slab model contains separate Sunda Arc & Burma Trench subduction zones. 
No subduction zone shown in the North Andaman-Irrawaddy area and also in North 
Myanmar(?}. In the North Andaman-Irrawaddy area sub-horizontal tear in the slab has 
been suggested by Kundu & Gahalaut (2010). 



 
 
    In the Gulf of California we see a boundary transform with a subduction zone to the south, however, this is in the context of 
    a triple junction. There is no trench-linked strike slip faulting along a volcanic arc but there is a pull-apart basin with spreading 
    oblique to the margin. Note the identification of the Baja California microplate or sliver plate. 

Possible Andaman Sea Analogue (1): 
Gulf of California 

Boundary transform with triple 

junction in the south 
• No trench-linked strike slip 

faulting along a volcanic arc 
• Pull-apart basin with spreading 

oblique to margin 

mhoefer (2011): 

Figure 1. Tectonic map of the Pacific-North America plate bound­
ary of the Gulf of California-Salton trough region (modified from 
Dorsey and Umhoefer, 2011 ). Thin black lines are faults; red lines 
are spreading centers in the southern Gulf of California and com­
plex pull-apart basins in the northern Gulf of California and Salton 
trough. Abbreviations from north to south: SAF-San Andreas 
fault; G-Guaymas spreading center; C-Carmen spreading cen­
ter; F- Farallon spreading center; P- Pescadero spreading center; 
A-Alarcon spreading center; T-A F.Z.-Tosco-Abreajos fault 
zone; EPR- East Pacific Rise. Normal faults on the Baja California 
peninsula and islands are selected you ng and active faults. 
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        The Sea of Japan has been interpreted as transform pull-apart spreading followed by back-arc spreading which would be the 
        opposite to the Andaman Sea. 
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Possible Andaman Sea Analogue (2): 
Sea of Japan 

• Transform pull-apart spreading followed by 

back-arc spreading 

>>> opposite to Andaman? 

Fig, 6_ Schematic model of opening uf the Japan Sea; I,., fim 
opening, pul1-apart mechanism; 2 - second opening, bad-arc 
spreading. 
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Integration Insights 

From Indonesia to Myanmar: 

The I ndo-Austra lia njSu nda 

Plate Margin in Space & Time 
Present day: 
• Plate margin shows transition(s) from 

subduction to transform 
• Central Andaman Basin is a trench­

linked strike-slip fault pull-apart basin 
• Recent volcanism seen at Barren Is, 

Narcondam Is and in Central Myanmar 
transform margin/slab tear related? 

In the Past: 
• Plate margin was wholly subduction to 

+-2sMa(?) 
• Subduction may have ceased in North 

Andaman-Irrawaddy region +-2sMa 
and in North Myanmar +-13.sMa 

• Alcock & Sewell Rises may represent 
Early Miocene episode of trench-linked 
strike-slip fault pull-apart sea floor 
spreading (Curray, 2005) 

Transform? 

Subduction? 

• 
• Transform 

Margin 

Active 

Subduction 

Chluach-andpur-M ao Fault 

CHINA 
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THANK YOU 
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