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Abstract

From published and unpublished sources, eleven seismic images have been compiled across the Indo-Australian/Sunda Plate margin from
Sumatra, where a subduction margin is generally recognized, through the Andaman Islands (India), to Myanmar where the nature of margin is
subject to debate. Integrating the seismic images, earthquake data, GPS velocities, volcanic K-Ar ages with available models and worldwide
analogues gives the following insights into the Indo-Australian/Sunda plate margin in space and time.

Present day:

e Plate margin shows transition(s) from subduction to transform from south to north
e Central Andaman Basin is a trench-linked strike-slip fault pull-apart basin
e Recent volcanism seen at Barren Is, Narcondam Is and in Central Myanmar could perhaps be transform margin/slab tear related.

In the Past:

e Plate margin was wholly subduction to +/- 25Ma (?)
e Subduction may have ceased in North Andaman-Irrawaddy region +/- 25Ma and in North Myanmar +/- 13.5Ma
e Alcock and Sewell Rises may represent Early Miocene episode of trench-linked strike-slip fault pull-apart sea floor spreading (Curray,

2005)
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From Indonesia to Myanmar: A Review of Seismic
Images Across the Indo-Australian/Sunda Plate Margin:
The Anatomy of a Subduction Zone in Space & Time

* Observations:
— Seismic lines (x11)
— Earthquakes & GPS velocities
— Faults & spreading
— Volcanic rock K-Ar ages

* Models & Global Analogues
* Integration & Insights
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Seismic line location map with volcanoes, major faults (including deformation front) and volcanic arc annotated. Of particular note
are the Sagaing and Semangko dextral strike slip faults that appear to be connected via Central Andaman Basin that it is thought
has seen sea floor spreading since the Pliocene oblique to the deformation front. The black arrow shows the Indo-Australian/Sunda
plate relative motion.
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1. Central Sumatra

Shulgin et al (2013)

DF to VA Distance = 300km

DF Trench Depth = 3750m

Trench Sediment Thickness = 3700ms
Accretionary Wedge Width = 130km
DF to FH Elevation = 3750m
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Introduces qualitative features (tectonic features, arrows) and quantitative parameters (tectonic features and box). Subduction
margin with top oceanic crust weakly imaged on seismic.



2. North Sumatra

Frederik et al (2015)

DF to VA Distance = 270km

DF to Trench Depth = 4500m

Trench Sediment Thickness = 2900ms
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DF to FH Elevation = 3750m
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Introduces observation of landward vergence (LV) and seaward vergence (SV). Subduction margin with top oceanic crust
weakly imaged on seismic.



3. Nicobar — N Sumatra
Singh et al (2012)

DF to VA Distance = 280km (corrected to orthogonal from 310km)
DF Trench Depth = 4500m

Trench Sediment Thickness = 3100ms
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Subduction margin with top oceanic crust weakly imaged on seismic but supported by earthquake hypocentres.



3. Nicobar — N Sumatra
Singh et al (2013)

DF to VA Distance = 280km (corrected to orthogonal from 310km)
DF Trench Depth = 4500m

Trench Sediment Thickness = 3100ms

Accretionary Wedge Width = 190km

DF to FH Elevation = 4125m

Deformation Forearc Fore-arc Volcanic Back-arc

_ Front ; ) High Basin Arc Basin
(R) Oceanic Plate Accretionary Prism Forearc High Forearc Basin  SP BB VA MB N
< > L > <€ P> > > € >
0= _——\WA SF ~|@
*/\—\\——’/\/VQ\ / [ —— - |
5 -_— ——— \\ Basin Sedim
= [ A
10 == . /
= Accreted Sediments
S 157 Oceanic Crust /’
£ 20 2
- =
o
D \
QO a5
30 Oceanic Mantle
Continental Mantle
35 -
40

T T T
100 200 300 400
Distance (km)

Singh et al, 2013, line three model illustrates the subduction margin interpretation.
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4. South Andaman

DF to VA Distance = 250km
DF Trench Depth = 4240m i
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This line shows a series of strike slip faults and the Sewell Rise high plus LV folds. South Andaman is thought to be a subduction
margin but seismic record length insufficient to image top oceanic crust and most of earthquakes related to a strike slip fault.
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Central Andaman South line exhibits different attitude of Indian plate and shape of accretionary prism to South Andaman line but
still thought to be a subduction margin. Note the Sewell Rise high feature with thin sedimentary cover.



5.Central Andaman South/| &
Singh et al (2013)
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Singh at al., 2015, line 5 model illustrates the subduction margin interpretation. Note the oceanic crust of the Central Andaman
Basin, which is perhaps better illustrated in the next slide.



ke GAAPG FAGE @

6.Central Andaman North|
Spectrum
Forearc Fore-arc Volcanic

High Basin Arc

DIRECTORATE GENERAL OF HYDROCARBONS ¥
(Ministry of Petraleum & Nutural Gos, Government of India) 8

Line 6 goes obliquely across the Central Andaman Basin spreading centre. A seismic line to the west was unavailable so
quantitative parameters are not shown.



7. North Andaman

Roy (1992) & Spectrum
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Line 7 is a composite line. Note the form of the Alcock Rise high, which is similar to that of the Sewell Rise.



7. North Andaman

Goli & Pandey (2014)

DF to VA Distance = 210km
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Goli and Pandey’s (2014) gravity model along a line of section including the eastern segment of line 7 shows a subduction margin
perhaps with a more steeply subducting slab plus the Alcock Rise, which is modelled as relatively high-density igneous rock.



8. Coco Island
Rangin et al (2013) & Total Myanmar
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Line 8 is a composite line. Similar tectonic features are identified perhaps including a paleo volcanic arc high. Transition to
transform margin?
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9. Preparis Island
Total Myanmar & Zuchmeyer et al (2015)

DF to VA Distance = +-240km?
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Line 9 is another composite. Note in the fore-arc basin uplift starting approximately 10Ma ago and extensive erosion both in
the fore-arc and the accretionary prism. Note also the identification of the Yadana High as a possible paleo volcanic arc high.

Transition to transform margin?



10. South Rakhine

Rangin et al (2013)
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Line 10 only has partial seismic coverage so is illustrated via a Google Earth elevation profile. The Forearc High is identified with
the Indo-Burman Range, which of course is above sea level. The Volcanic Arc as identified is on trend with Mt Popa. Transform

margin?



Line 12 only has partial seismic coverage so is illustrated via a Google Earth elevation profile. The Forearc High is identified with
the Indo-Burman Range, which of course is above sea level. The Volcanic Arc as identified is on trend with Mt Popa. Transform

margin?

11. North Rakhine

Rangin et al (2013)
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10/11. S/N Rakhine

Acharyya (2015)
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Acharyya’s (2015) schematic composite cross-section illustrates the model applicable to South and North Rakhine (and North
Myanmar). Note that a subducting Indian Plate is shown but is question marked and a Volcanic Arc with Miocene and Quaternary

volcanics is identified.
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Table of Subduction Margin Features
seaward-vergent
. L] thrustfolds
(Qualitative) T~ <
mmsnolds
o \
Attitude of Indian Shape of McNeiII & Henstock (2014
Plate Accretionary Fold Vergence
Prism Near Deformation Front
1. Central Sumatra E Dipping Tapered SV? E
2. North Sumatra E Flat Box LV E
3. Nicobar-North Sumatra E Flat? Box LV E
4. South Andaman E Dipping Tapered Mixed E
5. Central Andaman South E Flat? Box SV E
-lll.lllllllll.I-Illlll..lllllll...l-lllllII.I-IIIIIIIIIIIIIIIII.Illllll...l-lllll.lll.
6. Central Andaman North N/A N/A N/A
7. North Andaman Dipping = Box? SV?
: .9- :IIII.IIIIIIIIIIII.IIIIII.II.IIIIII:
8. Coco Island Dipping E.' 8 Tapered? : Mixed/Vertical i
@ 55 Lo .
9. Preparis Island Flat g o Tapered? i Mixed/Vertical? i
L] EIEEEEEEEEEENENEENEEENEEEEEEEEEEEEE]
10. South Rakhine Dipping? § é Tapered? SV?
(¥}
11. North Rakhine Flat 0 §. Tapered? SV?
° 5
indicative of subduction or Indicative of nature of failure
of Indian plate topography? along basal decollement?

Table of qualitative subduction margin features show some consistency for lines 1-5. Where the attitude of the Indian Plate is
dipping the accretionary prism is tapered, where it is more flat the prism is box shaped. It is not clear whether attitude of the Indian
Plate is indicative of the subduction process or is simply indicative of the Indian Plate topography/ridges.
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Parameters

Azimuth DF to VA Trench Accretionary | DF to FH
IND Plate Distance Sediment Elevation
Rel. to Thickness {m)
Trench/Arc (ms)

Subduction zone .F; Tﬁ .
1. Central Sumatra 60° 1 50 . |300 8 3750 o |D_3700_T 130 - | 3700
& L : Q :E = L
2. North Sumatra S| 50 a |0 § |270 E 4500 § F20008 . [0 &| 3750
S (7] <1 = S < s
3. Nicobar-North Sumatra 2 502 g 60 § 280 g 4500 §" F?_3100_B ‘E 170 b= 4125
e = @ ~ = L) ‘G ™
4. South Andaman § 350 ‘g’.g 75 ; 250 § 4240 E D_4000_T § | 175 E_ 4050
b Q - o V] L
5. Central Andaman 8] 250 2. |s0 57280 2 |3560 g F? 2000 B 200 &
IIIIIIIIIIIIIIIIIIIIu Illll-gl"llIIIIgIIIIIIIIvIIIIIII (8 A RRRs RN ERE_RERRRENRER _NOREEERR.]
renchpara]lelshearzone? llllllllﬂéllllllgl IIIIIIIBIllIllllllllllllllllrl\llLIIIIIIIIIIIIIIII
t 7. North Andaman NG g 85 g |210 E 3375 D_4000_B? ga 175 3375
i E — Fee S
8. CocoIsland ° § 85 § |240 A |29025  §(p_2500 17 24<130 2925
a [ ] S A = =
F 9. Preparis Island S, 0° B85 8 240 <2700 §f 240017 B | 2 2700
r§ EEEEEEEgGE llllﬁllllllll“ lllllll& EEEEEEEEEE TN NN NEEEENEENEEEES
Omp|eX20new/eXpW6dgec IIIIIII“IIIlllllllllllll‘gll.lllllu IIIIIIIIIIIIIIIIIIII?IIIIIIII
¢ 10. South Rakhine £Y 258 1002’u 260/220* o 2325 E ?_>4000_T? gm 185 & | 3300
m 4 =E = K] =S o
8 11. North Rakhine ‘%’, 25° 110§E 320/220* § 1875 '.E F _4500_T? gE 210 24 3100
n < Q. = Q=2 v
& North Myanmar © 11000 u’f. 500/250* o 0 & 400 S 2500
lllllllllllllIlllllllﬁllllllllllllllll snssmnanfhenennnnnnndennnnnfunnn lllllllgl EEEEEEE
Q * Measured from IND Plate Wedge
Kaladan Fault Attitude Shape

Table of quantitative subduction margin parameters shows:

(1)  Azimuth of Indian Plate relative to trench/arc starting at 60 deg for line 1 and reducing to +-0
deg for lines 7-9, thereafter increasing and then decreasing.

(i1)) Age of Indian Plate increasing form 50Ma in the south to 110Ma in the north. There has been
some suggestion in the literature that older oceanic crust being cooler and denser could lead
to steeper subducting slab and a reduced DF to VA distance.

(i11) DF to VA distance does indeed exhibit a general decreasing trend from Sumatra to North
Andaman but with numerous variables, no firm conclusion should be drawn. In the Rakhine,
the accretionary wedge expands due to increased sediment supply post-Shillong Plateau
uplift in the Pliocene. The pre-Pliocene DF was probably along the line of the Kaladan fault
and if this point of reference is used then DF to VA remains constant.

(iv) DF trench depth generally decreases from south to north reflecting increasing Bengal Fan
sediment input.

(v) For lines 1-5 trench sediment thickness, though variable, seems to have a clear relationship to
Indian Plate attitude/wedge shape. Trench sediment thickness is greater with dipping plate
attitude and tapered wedge shape and less with flat plate attitude and box wedge shape.

From the two tabulations of seismic features/parameters, three zones have been identified: (1)
Subduction zone; (2) Trench parallel shear zone and (3) Complex zone with expanding wedge. To
understand more about this plate margin additional data needs to be considered.
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North Sumatra (England et al, 2004)

Interpretation: Active subduction in
North Sumatra with seismicity
beneath volcanic arc @115km.

96° 98° 100° 102° 104°
: ' ' ' Volcanic
Arc
0 : 0 -
e T ; =
s 60 WKL 2
=< 80 +—t—t= = 10
= 100 e i
% P e ol oo L L ikl ..,.W........... IO I ..........%
Q 140 N
160 .
180 +—{ 115km | -
200 f —
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Earthquakes cross-section North Sumatra shows active subduction with seismicity beneath volcanic arc at 115km.
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Earthquakes:
Andaman — South Rakhine (Kundu & Gahalaut, 2010)
Interpretation: Active subduction in Zone-3
. ! . .
:HBO _S;;i::'c'tv 1960-2008:With M.>4: (Central Andaman). No active subduction in
® 50-100km Zone-2 (North Andaman-irrawaddy region).
WFL00~2000 Active subduction in Zone-1 (South Rakhine).
* Engdahl—van der Hilst—Buland (Engdahl et al, 1998)
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Kundu and Gahalaut (2010) presented earthquakes cross-sections, which were interpreted to show active subduction in the Central
Andaman zone, no active subduction in the North Andaman-Irrawaddy zone and active subduction in the South Rakhine zone. Note
for the Central Andaman zone higher seismicity and more steeply subducting slab and for South Rakhine zone lower seismicity

and more gently subducting slab.
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North Myanmar 24°N (Steckler et al, 2016)
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Steckler et al (2016) used GPS velocities in North Myanmar at approx. 24 deg north to show India-Sunda relative plate motion
partitioned between fault normal and fault parallel (13-17mm/yr fault normal plate convergence, 41mm/yr fault parallel dextral
strike slip). Although the predominant motion is fault parallel, the fault normal motion indicated there is active subduction.
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Earthquakes &/GPS Velocities:
North Myanmar 25°N (Kundu & Gahalaut, 2013)

b NV Interpretation: All India—Sunda relative plate motion partitioned
7 }.‘:.,',2?7".\ N A 4% between Churachandpur-Mao Fault and the Sagaing Fault
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Kundu and Gahalaut (2013) also used GPS velocities in North Myanmar at approx. 25 deg north to show all India—Sunda relative
plate motion partitioned between the Churachandpur-Mao Fault and the Sagaing Fault dextral strike-slip faults. The interpretation
of no active subduction was supported by the interpretation of deep earthquake as intra-plate type with nodal planes oblique to
strike of Indo-Burmese Wedge (maximum principal stress NNE-SSW). Note how C-M dextral strike-slip fault is extended at depth
along what could be interpreted as a subducting slab.
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Summary map of fault, spreading and volcanic K-Ar ages: State offsets and then go through faults and spreading box comments.
It appears that there could have been 80-120km of movement along the whole Sagaing-Semangko system with corresponding

sea floor spreading in the Central Andaman basin in the last 4Ma. The question arises of how much fault movement took place
before this and was there corresponding sea floor spreading? In the last 4Ma a significant proportion of the Indo-Australian/Sunda
plate relative motion has been along the Sagaing-Semangko system.



QU’JIO g -

=
95‘:IICE '.'OU'?J E

Faults" 'S'preadlng
& Volcanic K-Ar Ages| [isnex

Volcanic K-Ar Ages
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Recent volcanism not subduction related?
Irrawaddy

Paleo volcanic arc indicating that
subduction ceased 25Ma ago?

North Myanmar

Paleo volcanic arc indicating that
subduction ceased 13.5Ma ago with recent
volcanism not subduction related®?

Sources of K-Ar ages:

(1} Sumatra - Crow {(2005)

{2} Irrawaddy - Total Myanmar
{3} Alcock Rise - Curray {2005}

{4) North Myanmar - Lee et al {2016) s
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|15Ma|

Richards et al (2007)

Observations: Subducting margin @45Ma is NW-SE
but by 25Ma is more-or-less N-S north of Sumatra.

Plate tectonic models, including Richard’s et al (2007) illustrated, show that specifically north of Andaman region there has
been a change of orientation from oblique to parallel of the Indian Plate relative to the subducting margin.
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Plate Tectonic Model (& Uplift History):
Lee & Lawver (1995) (& Allen et al (2008))

. Andaman  Andaman
Interpretation: Angle 3_f £ ®eaflobr  ses floor
convergence was +-10° 0- 5 E 158preadihg dpreading?
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sea floor spreading 0-4Ma ® g Uplift
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Figure 18. A comparison between In- ) 7nfonform'fy
dian convergence history (after Lee and sl ot deposition
Lawver. 1995, and Guillot et al., 2003) T
and the uplift and sedimentation history Ophiolite i H “obduction
of the rocks studied from South Anda- N : = H e s o Calli+ ":00
man Island. B Ao (iicsh

Lee and Lawver’s (1995) graph illustrates this quantitatively in more detail. Read through the box. The question arises whether
there could have been an early period of sea floor spreading associated with low angles of convergence. Note that Allen at el
(2008) identified periods of uplift from rock studied from South Andaman Is. Except for recently, periods of uplift are associated
with higher angles of convergence and perhaps active subduction.
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Model for the Indo-Australian/Sunda Plate Margin:
Frankel & Owen (2013) & Woodcock (1986)

Indent-linked

Strike-slip fault Back-arc basi

Trénch-linked
Stiike-slip fault

Continental
crust

Arc

Boundary
transform

Ridge Oceanic crust Ridge-transform

Figure 2 Tectonic setting of major classes of transform faults. Adapted from Woodcock, N., 1986. The role of strike—slip fault systems at plate
boundaries. Philosophical Transactions of the Royal Society 317, 13-29.

One model for the Indo-Australian/Sunda plate margin comes from Woodcock’s (1986) tectonic setting of major classes of
transform faults. AOI is highlighted in the red box.
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e Continuous subduction zone

* Trench-linked strike slip faulting (TLSSF)
* TLSSF pull-apart basin with spreading

Central Andaman Basin:
= Trench-linked strike slip fault
pull-apart basin?

'\_

Sunda Plate

\\

Sagaing Fault
A._

—
S

Indian Plate

Trench-linked
Strike-slip fault

\

Sumatra: Semangko System

31 Qil & Gas Myanmar Geosciences Conference , 22-24 February 2017

Model for the Indo-Australian/Sunda Plate Margin:
Frankel & Owen (2013) & Woodcock (1986)

Trench-linked Strike-slip Faults:

crustal type

active duration

strike-slip offset

new or reactivated?

coeval sedimentation in fault zone

coeval volcanism in fault zone

coeval plutonism in fault zone

review papers

active examples

continent—continent, often arc or forearc crust
tens of millions of years

hundreds of kilometres

new, but including old segments: may

nucleate on or localize arc

arc-derived clastics, non-marine to marine, or
non-depositional

arc tholeiites or calc-alkaline associations;
high-K shoshonites may be common on s-s

strands

gabbros and I-type granites

Fitch 1972; Karig 1979

ko system, Sumatra (Kang ¢/ al. 1980

al. 1979

Fault (Karig &
tka Faults (Savostin ef al. 1983)
S

1980

ea (Harding 1983

Median Tectonic Line, Japan (Taira e al. 1983)
Hikurangi Margin, New Zealand (Lewis 1980)
Philippine Fault (Allen 1965)

Atacama Fault, Chile (Allen 1965)
Longitudinal Fault, Taiwan (Allen 1965)

New Hebrides (Karig & Mammerickx 1972)

Analogues do not have TLSSF
pull-apart basins with spreading

Zoom of red box identifies key features in the context of Indo-Australian/Sunda plate margin. Central Andaman Basin is
trench-linked strike slip fault pull-apart basin. Note blue box comments. Woodcock’s (1986) examples include Semangko,
Sagaing and Andaman Sea separately and none of the other examples involves a pull-apart basin with spreading.
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Region  Plates® Region Name

Two-Plate Concave Regions:

1 sa-sc south Georgia
2 pe-ph Itu Trench
3 au-pc Santa Cruz-New Hebrides
4 na-pc Kamchatka
- na-pc southwestern Alaska
6 ca-na Northern Domincan Republic
7 eu-ph Luzon
8 au-pc Hikurangi
9 cu-in western Himalayas
10 af-eu southern Carpathians
Two-Plate Convex Regions:
11 na-pc Central Aleutians
12 ca-na north Haiti
13 ca-na Lesser Antilles
14 sa-s¢ north Scotia
15 sa-an South Scotia?
16 pe-ph north Mariana
17 au-pc south Soloman Islands
18 au-pe south Vanuatu
19 ca-sa Trinidad-northern South America?
20 au-pc Samoa Islands-Tonga
T 21 pe-ph Guam

22 eu-ph Mindanao

120 80 40 o] 40 80 120 160 160 23 i socihieia Nevi Zeilind

Figure 1. Locations of the 30 subduction-to-strike-slip transition regions, numbered as in T'able 1. Regions 1-24 24 s Sumatra

are two-plate transition regions; solid boxes indicate convex trench geometry, while dashed boxes indicate concave Triple Junction Regions:

trench geometry. Regions 25-30 are triple junctions, indicated by circles. Note that convex and concave transition 25 cu-an-pc Banda

regions often occur in close geographic proximity. 2% ao-oheh New Guinea
27 sb-ss-pc New Britain
28 ss-pc-au Woodlark
29 na-an-sa southern South America
30 ca-nz-na Cocos-Panama

“Platc labels are as follows: ph, Philippines; ca, Caribbean, au, Australian; pe, Pacific, cu, Eurasian; af, African; na,
North America; sa, South America; an, Antarctic; in, Indian; nb, North Bismark; sb, South Bismark; ss, Solomon Sea; sc,
Scotia; and nz, Nazca

Another model for the Indo-Australian/Sunda plate margin comes from Bilich et al’s (2001) subduction to strike-slip transitions.
Sumatra is listed as a two-plate convex region as are the Central Aleutians, which I would like to compare with Sumatra.
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Two Plate Convex Region/Open Corner Analogue
Central Aleutian: Bilich et al (2001)/Mann & Frohlich (1999)

SIBERIA

* Transition from subduction zone to
transform zone

* No trench-linked strike slip faulting
along volcanic arc

* No TLSSF pull-apart basin

YAKUTAT BLOCK
COLLISION

oF 4,

5.2
\%
>

CW BLOCK ROTATION &
WESTWARD TRANSLATION

\RC SPLINTRRING
& WESTWRRD

TRANSLATON CW BLOCK ROTATION &

WESTWARD TRANSLATION

Earthquakes v
Engdahl & Villasenor {2002): () 70-350km *0g

The Central Aleutians shows a transition from subduction zone to transform zone from east to west as the Pacific Plate motion
changes from orthogonal to parallel. No trench-linked strike-slip faulting is identified along the Aleutian Volcanic Arc and
there is no pull-apart basin but earthquakes follow the same pattern seen going from Sumatra to the Andaman Is and a sliver
plate can be interpreted in strike-slip zone in the west.
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Two Plate Convex Region/Open Corner Analogue
USGS Slab Models for Subduction Zones

Observations: Slab models truncated
approaching transform zone

http://earthquake.usgs.gov/data/slab/#models e, | Wi ”_gwﬂ Sumatra-Java

TSgo° ; f S 110" 1150 120° 125 130

The USGS slab models for Alaska-Aleutians and Sumatra-Java and similar and they are both truncated approaching the respective
transform zones.
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Sunda Agc & Burma Trench Slab Model:
Richards et al (2007)

Observations: Slab model contains separate Sunda Arc & Burma Trench subduction zones.
No subduction zone shown in the North Andaman-Irrawaddy area and also in North
Myanmar(?). In the North Andaman-irrawaddy area sub-horizontal tear in the slab has
been suggested by Kundu & Gahalaut (2010).

(Sdeuction Zones: ' Philippine Plate
Sunda Arc @9\,
@ Burma Trench = \

6.8cmiyr |

i
>
"“"’”"
-~ &
SuB horizontak--==2
Tea Asthenosphere
Inflow
500Km

ahalaut (2010) 2 72cmiyr  Australian Plate

Richards et al (2007) slab model goes further and shows separate Sunda Arc & Burma Trench subduction zones. No subduction zone
shown in the North Andaman-Irrawaddy area and perhaps in North Myanmar. In the North Andaman-Irrawaddy area sub-horizontal
tear in the slab has been suggested by Kundu and Gahalaut (2010). This may give an idea of what happens to a slab in a subduction
to strike-slip transition with time.
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Possible Andaman Sea Analogue (1):
Gulf of California

EB (2010)"
7] Gorda plate [ \

North America plate)

L3

faulting along a volcanic arc
* Pull-apart basin with spreading
oblique to margin

]
|
|

- |

il
1
1

2
1

i
f

Umhoefer (2011):

Figure 1. Tectonic map of the Pacific-North America plate bound- [§
ary of the Gulf of California—Salton trough region (modified from
Dorsey and Umhoefer, 2011). Thin black lines are faults; red lines
are spreading centers in the southern Gulf of California and com-
plex pull-apart basins in the northern Gulf of California and Salton
trough. Abbreviations from north to south: SAF—San Andreas
fault; G—Guaymas spreading center; C—Carmen spreading cen-
ter; F—Farallon spreading center; P—Pescadero spreading center;
A—Alarcéon spreading center; T-A F.Z.—Tosco-Abreajos fault
zone; EPR—East Pacific Rise. Normal faults on the Baja California
peninsula and islands are selected young and active faults.
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In the Gulf of California we see a boundary transform with a subduction zone to the south, however, this is in the context of
a triple junction. There is no trench-linked strike slip faulting along a volcanic arc but there is a pull-apart basin with spreading
oblique to the margin. Note the identification of the Baja California microplate or sliver plate.
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Possible Andaman Sea Analogue (2):
Sea of Japan
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Eocene !4 Upper Oligocene
Lower Oligocene Lower Miccene

* Transform pull-apart spreading followed by
back-arc spreading
>>> opposite to Andaman?

Lallemand & Jolivet (1986):

N\
iR

; %Dll ‘ [p\ 4 [+ mothetica fauts |
/

3
Middie Miocene

Amurian
plate’'s motion

7N

Fig. 6. Schematic mode! of opening of the Japan Sea; / = first F—cissine axis
) 3 ;i * closing lel]

opening, pull-apart mechanism; 2 = second opening, back-arc

spreading.

Fig. 7. Reconstruction of the circum Japan Sea region from Eocene to Present.

The Sea of Japan has been interpreted as transform pull-apart spreading followed by back-arc spreading which would be the
opposite to the Andaman Sea.



Integratlon & Insights

From Indonesia to Myanmar:
The Indo-Australian/Sunda
Plate Margin in Space & Time

Present day:

* Plate margin shows transition(s) from
subduction to transform

» Central Andaman Basin is a trench-
linked strike-slip fault pull-apart basin

* Recent volcanism seen at Barren Is,
Narcondam Is and in Central Myanmar
transform margin/siab tear related?

In the Past:

* Plate margin was wholly subduction to
+-25Ma(?)

* Subduction may have ceased in North
Andaman-irrawaddy region +-25Ma
and in North Myanmar +-13.5Ma

* Alcock & Sewell Rises may represent
Early Miocene episode of trench-linked
strike-slip fault pull-apart sea floor
spreading (Curray, 2005)

Transform?

Subduction?

Transform
Margin

]

Active
Subduction

Churachandpur-Mao Fault i}

Sagaing Fault
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THANK YOU
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