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Abstract
Description:

A comprehensive interpretation of nearly 2 million geologic tops is used to build a structural framework spanning the: Delaware Basin, Central
Basin Platform, and Midland Basin. Digital well logs are extracted over mapped Leonardian and Wolfcampian geologic zones and are gridded
into regional trends. Fluid information, gathered during production testing and historical production, are similarly gridded for corresponding
well target zones — to create maps of: GOR, water-cut, gas-cut, and more. Full 3D models are constructed for key petrophysical and fluid
properties, which in turn are extracted to average values along intersecting horizontal wellbores.

Model-based analytics are then used to correlate extracted properties and engineering data (horizontal length, etc.) to build a well production
prediction model. Finally, the analytics model is normalized for engineering variability (i.e. engineering parameters are set to nominal values)
and is applied to the 3D property models of gamma-ray, porosity, pressure, water-cut, etc. — creating a 3D sweetspot volume. Incorporating
vertical and horizontal well spacing data into the analytics model updates provides a way to estimate well production depletion effects on the
sweetspot model

Application:

The original and depleted Permian 3D sweetspot models provide insight into existing well pattern effectiveness and metrics for design of future
multi-bench development. Well-to-well frac interference and production contention effects are highlighted, providing guidance into not just
horizontal well placement — but also timing of infill and extension development. The analytics model can also be used to predict planned well
performance, through specification of intended target location, well length, frac intensity, and stage spacing.

Results and Conclusions:


murray.roth@gmail.com

Contrary to previous published studies that focus on the importance of high-energy fracs, we find that frac intensity, and other engineering
parameters, need to be tuned to rock and fluid properties of targeted reservoirs. Specifically, for the Permian: water-cut, reservoir pressure,
potential frac barriers, and relative lithology and porosity need to be factored into any engineering optimization workflow.

Technical Contributions:

Regional 3D property models of the Permian Basin. Creation of corresponding original and production-depleted 3D sweetspot models.
Evergreen model of optimizing engineering designs for specific target reservoirs.
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Permian Basin unconventional oil
prospectivity is primarily driven by
oil/gas/water mix and reservoir pressure.

Poor well performance, often in the form
of early gas bubble-point effects, can occur
in certain areas or result from over-
engineering geologic sweetspots.

Using measured engineering data, and
gridded fluid and geologic data, we
construct layer-based analytics models to
predict well performance response to
horizontal well locations, and drilling and
completions parameters



Stacked Cum Oil/Gas and Oil Cut Trends
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Good wells going bad across the Permian
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 Wells in Andrews, Martin,
Midland and Upton Counties
have the highest and most
consistent oil cuts

« Wells in Irion, Crockett and
Schleicher Counties start with
lower oil cuts and rapidly
transition to gas well

* Wells in Glasscock and Reagan
Counties start with high oil
cuts, but become very gassy



What is causing good wells to go bad across the Permian?
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Project Data and Work Flow

Model-Driven |l Decision-Ready Spotfire™

Analytics Data Dashboard
Model impact of individual geologic Data Quality
and engineering parameters on Control and Basic
horizontal well performance Analysis

Data Cleaning, Enhancement and Integration

FracFocus+ | Enerdeg™

FracFocus and State frac Well, survey,well log, Geologic tops
ingredient details engineering and
production data



Data Cleaning, Enhancement and Integration
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Gridding Geologic Tops across the Midland Basin
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3-6 month averaged gas
and oil cut (production
bubbles on left) for all
1239 Wolfcamp B wells
used as control points
for creating oil/gas-cut
grids (right).

Contours for top
Wolfcamp depth from
surface are overlain
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Midland Basin Cum Oil versus Gas Cut over 2.5 years

Cum Oil (Normalized to 7500 ft) vs. Monthly Gas Cut
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Two-and-a-half-year
normalized cumulative
oil (vertical axis) versus
monthly gas-cut
percentage (horizontal
axis) — averaged for
Midland Basin Wolfcamp
B wells over depths
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is @ month

Every large dot along a
curve is a year



6-mo Cum QOil versus Depth and Proppant

6 Month Liquid per Well vs. Horizontal Section TVD (Midpoint) 6 Month Liquid per Well vs. Total Proppant
240000 Total Proppar 240000 Horizontal Sectinn TV/
Y ® | (173522¢ ™Y @ | (9808.97) . B
[6) © | (1337004 (@) © |(9381.77) S - t h / t
_— & e oo AX-MONTN cuMmMuiative

) @ | (8511961 s This is the highest ®e @ | (7992.96)

@ | (6968.76)

®
This is the highest % engineering oil (vertical axis) versus

6 Month Liquid per Well

™ geologic correlation o correlation with " - true vertical depth
with production
180000 e.° 00000 i ‘O . .
0.20 RA2 | 0.45 R Pradugtion™ =, ¢ horizontal axis) colored
» O, o0 (026RA2|0528)'$'
- - 0®e ‘ 60 : : ) : 12=0.261
Lol b Seets B2, by total proppant, left.
p— S o2 - 100 %
T .ﬁ{;- :
s RO .;-?éaéz Six-month cumulative
S ° ~ P o FY % . . .

- S o é o S oil (vertical axis) versus
. Ry Pt T L . total proppant

% “ e 2 ‘.%..*:l . .
» o ..:'Q.. P DA SRR . (horizontal axis) colored

. 1.)) \_"\. :":\ i
g (ST R by true vertical depth,
ARG e right.
20000 ® . '. “ ... r‘. } ® ‘. ' PY 20000
o ® o ° ® ° ® .. )

Total Proppant

Horizontal Section TVD (Midpoint)



Cum Oil and Oll Cut - Depth versus Proppant Intensity

| Horizontal Section TVD (Toe) vs. Proppant per Length

5k 6 Month Liquid p...
# @ (1352)
5.5k ° © | (1055)
@ |(830)
8k (620
@ |(3.%)
65k 6 Month Liquid p....
- = @:x2
B *<022
e
e 75k
=
<
S
g 8k
w
=
§
N 8.5k
3
x
Sk
9.5k
10k
10.5k
0 500 1k 1.5k 2 2.5k 3k
Proppant per Length
| Horizontal Section TVD (Toe) vs. Proppant per Length Heat Map
Proppant per Length @ P90.00
O P70.00
‘2 o ‘o ‘o @ Ps0.00
o8 8n 83 8 &g @ P30.00
8 8& 83 25 o
28 8= &% 22 & @ P10.00

5256.18 -
7412

TNT44-
7852.84

785452 -
8263.46

8265.26 -
8790.33

Horizontal Section TVD (Toe)

8792.93-
9255.80

9267.02 -
9464.18

9454.60 -
974499

974535 -
10251.20

6 Month Liquid per FT per Well

[}un’zonlal Section TVD (Toe) vs. Proppant per Length

5k Month 22-24 Liqu...
@ (084
5.5k 01073
@ |(061)
6k @ | (045)
@025
6.5k Month 22-24 Liqu....
s 7 @:o
8 *<007
£
e 7.5k
g
<
S
3 8k
12
]
£
g 85k
=]
S
%
95k
10k
105k
0 500 1k 15k 2 25k 3k
Proppant per Length
Horizontal Section TVD (Toe) vs. Proppant per Length Heat Map
Proppant per Length @ P20.00
© P70.00
to i ‘= ° @ P50.00
02 83 8a S 83 @ P3000
- o< - O 0o -0
=g g 38 g% g8 @ P10

5256.18 -
6968.09

6968.87 -
7649.52

7651.66 -
8026.05

8028.71-
8475.13

Horizontal Section TVD (Toe)

1200 Ib/fp

*

9119.85-
9468.23

L g

9468.88 -
9801.54

LE I --l‘
9994 Liquid Cut (Liquid & Gas) FEBEPEL

Depth (vertical axis)
versus Proppant
Intensity (horizontal
axis) crossplots and
heat maps.

6-month cum oil
(normalized to 7500’
lengths) on left.

22-24 month oil cut
on right.









o o o o o o o
S S S S S a S S
o =) o =) =) Q o o
S o 0 0

)
S
S
S
S
o
S
S
o S
S
= Q
o a
a
S,
e
a
o o]
» O
a
o)
0
o)
Q
d
o
o o)
= S
a
a
QO
O
J
I
1
[ 1
i |
il
! [
R N e T L e |
= PP L SR N Iy | =
o o o “ o o o o o
S S S S S S S S
=) S S as S S S n o <] S S
3 o a) o 3 o




Midland Gamma—NRa rends — Flattened on
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Multi-layer Wolfcamp Production Prediction Model
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Transparency view of
4-layer Wolfcamp B oil
production prediction
model (left)

Horizontal wellbores
landing above the
Wolfcamp B structural
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Production Prediction Model Quality

Model Well Correlation Coefficient, Test Well Correlation Coefficient — Model Wells Date
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Results and Conclusions

- Model-driven analytics identify optimal Midland Basin oil production sweetspot
characteristics:
- Wolfcamp B & C at 6000 foot subsea depths (~9500 TVD)
- Low initial gas cut, relative to oil and gas BOE, of 20%
- Low initial water cut, relative to oil, gas and water BOE, of 20%
- Gamma-ray lithologies of ~75 API
- Contrary to previous published studies, focusing on the importance of high-
energy fracs, we find that frac intensity, and other engineering parameters, need
to by tuned to rock and fluid properties of targeted reservoirs.
- Simply drilled horizontal wellbore paths of ~3 miles, that are parent wells >750' from other wells
- Modern slickwater fracs (water (gal) ~= proppant mass (b)), with 1500 Ib/ft proppant intensity
- 2D sweetspot grids and 3D sweetspot volumes, updated for dynamic well

spacing production, highlight remaining well targets in the Midland Basin
Wolfcamp reservoirs — to support full-field development
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