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Abstract 
 
Mississippian limestone and chert reservoirs in north-central Oklahoma include lithofacies that form upward-shallowing cycles that commonly 
transition from more mud- to grain-dominated and are typically capped by deposits indicative of subaerial exposure. Mississippian-age rocks in 
the study area consist of 17 lithofacies that were deposited on a distally steepened ramp. Vertical lithofacies stacking reveals 28 higher order 
cycles, and cycle thickness varies from 1 ft (0.3 m) to 100 ft (30.5 m). Most cycles (22 of 28) are asymmetric, regressive cycles with an average 
thickness of 21 ft (6.4 m).   
  
Digital-image analysis (DIA) illustrates that most lithofacies exhibit nanopores (1 nm2 < A < 62.5 μm2) and micropores (62.5 μm2 < A < 500 
μm2) with five major pore types including interparticle, intraparticle, vuggy, channel, and microfracture. DIA-porosity quantification yields a 
reliable result to predict porosity with somewhat higher values as compare to core-measured porosity. The discrepancy is likely due to several 
factors including the internal pore network, diagenetic alteration, unconnected microfracture network, and isolated pores. The combination of 
thickness and high reservoir quality make most grain-dominated lithofacies the most prospective. Moreover, reservoirs with higher porosity 
and permeability are commonly associated with the upper intervals of higher order regressive cycles.  
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Paleogeography and Stratigraphy

Modified After Mazzullo 2011, Mazzullo et
al., 2011, and Mazzullo et al., 2016

Blakey, 2013

Early Mississippian (~345Ma)



Core Location and Data

• Devon Energy Frieouf 1-7 SWD 
• Anadarko Ramp
• Thickness 528 ft (~161m)   
• Depth 4780 ft SS (~1457 m) 

Modified from Dutton, 1984;  McConnel 1989;
Campbell et al., 1988; Northcutt and Campbell,
1995; Johnson and Luza, 2008; LoCriccho, 2012.

• Wireline logs
• Porosity and Permeability
• 57 Thin Sections
• ~23500 SEM photomicrographs



Lithofacies Characterization – Kinderhookian

St. Joe Group
• GR : 60 – 100 GAPI
• 22 ft (~6.7 m)
• Light color mudstone to 

shaly mudstone
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Lithofacies Characterization - Meramecian
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Lithofacies Characterization - Meramecian
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Spatial Distribution of Lithofacies

Chert breccia in greenish shale matrix
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1 - 10 : Undivided Meramecian
11 – 16 : Cowley Formation
14* and 17 : Kinderhook



Mississippian – Sequence Stratigraphy

• 32 relatively high frequency cycles
• 1 – 100 ft (0.3 – 30.5m)
• 24 of 32 = asymmetric
• regressive > transgressive
• Kinderhook = 5 cycles,  avg thickness 12 ft
• Cowley = 12 cycles, thickness > 60 ft
• Undivided Meramecian  = 15 cycles, avg thickness 13 ft
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Quantifying Pores – Digital Image Analysis

Modified after Loucks et al., 2012

Photomicrograph
acquisition
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Pore extraction and
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Pore Types
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Pore Types
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DIA : Quantitative Analysis - Circularity
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DIA : Quantitative Analysis – Pore Size Distribution
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DIA : Quantitative Analysis – Pore Size Distribution



DIA: Pore Size Distribution



Integration

Devon Energy Frieouf 1-7 SWD:
• Predictable correlation with 

sequence-stratigraphic framework,
porosity, and permeability.

• Best reservoir quality at the top of 
high-order regressive cycles.



Conclusions

• Pore Architecture Characterization - DIA:
• DIA porosity vs. Laboratory Measured Porosity - positive
• Pore shape vs. porosity and permeability - indeterminate
• PSD: fine-grained vs. coarse-grained dominated lithofacies

• Reservoir quality – regressive cycles

• Sequence-stratigraphic analysis – best reservoir quality 
intervals
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